Abstract:
A tubular dielectric barrier discharge lamp having a discharge vessel and at least one inner wall electrode has, at least at one end, a constriction 9, which extends along the entire circumference of the discharge vessel and tapers in the direction opposite to the interior of the discharge vessel. The constriction 9 serves the purpose of sealing this end of the discharge vessel in a gas-tight manner via a closure element 4, which is in the form of an exhaust plate and is inserted at this point. The tapering of the discharge tube for the purpose of forming the constriction 9 prevents or at least markedly reduces any negative effect of the electrode spacing and/or the thickness of the dielectric coating of the electrodes in the region of the discharge space which is immediately adjacent to the constriction 9.
Abstract:
A display device comprises a planar light source device comprising a light source body having multiple opening portions for air exhaust and injection of the discharging gases, at least one affixing member being affixed to the light source body and sealing each of the multiple opening portions, at least one getter being on the at least one affixing member and corresponding to each of the multiple opening portions, and first and second electrodes being formed on opposing edges defining the outer surface of the light source body, a display unit displaying images using light from the planar light source device, and an inverter applying discharging voltages to the first and second electrodes for driving the planar light source device. According to this configuration, the present invention may reduce the thickness of the planar light source device and improve getting efficiency of the impurities and emitting efficiency of mercury by increasing the surface area of the getter.
Abstract:
A dielectric waveguide integrated plasma lamp (DWIPL) with a body consisting essentially of at least one dielectric material having a dielectric constant greater than approximately 2, and having a shape and dimensions such that the body resonates in at least one resonant mode when microwave energy of an appropriate frequency is coupled into the body. A bulb positioned in at least one lamp chamber in the body contains a gas-fill which when receiving energy from the resonating body forms a light-emitting plasma.
Abstract:
An elongated dielectric barrier discharge lamp with outer and inner electrodes has a tube that is arranged on the lamp stand end of the discharge vessel and that surrounds the lamp stand. The tube serves to receive a seal in order to install the lamp in a process chamber in a gastight manner. Power supply of the outer electrodes is separated from the power supply for the inner electrodes coming out of the lamp stand by means of the abovementioned tube. This makes it possible to prevent effectively parasitic discharges between the power supplies which are applied at different potentials during operation also in process chambers under negative pressure.
Abstract:
A cold cathode discharge lamp includes: a transparent hollow housing; a fluorescent film formed on inner surfaces of the hollow housing; a pair of cold cathodes that are located in the hollow housing; and a discharge gas that contains hydrogen gas sealed within the hollow housing. Each of the cold cathodes includes: a supporting body that has conductivity; an insulating diamond film formed on the supporting body; and an insulating layer that insulates the supporting body from the insulating diamond film.
Abstract:
The invention relates to a new design of discharge vessel for a discharge lamp, in which dielectrically impeded discharges are to be generated. In this case, a discharge vessel plate 1, 9 is, as it were, of two-fold design, specifically as a first discharge vessel plate 1 with an external electrode set and, in addition, as a stabilizing plate 9 outside the first discharge vessel plate 1.
Abstract:
An external-electrode discharge lamp has a light-permeable, electrically insulative outer casing having a closed hollow space defined therein. A discharge medium is sealed in the outer casing. An external electrode is disposed on an outer surface of the outer casing for causing a dielectric barrier discharge in the discharge medium. The external electrode comprises a plate of an electrically conductive material and is brazed to the outer surface of the outer casing by a brazing material disposed fully circumferentially on the outer surface of the outer casing.
Abstract:
A gas discharge tube includes a plurality of light-emitting portions that are provided outside of the tube, at least two discharge electrodes, and an electron emission film formed on the entire inner wall of the tube for improving discharge characteristics.
Abstract:
A light source device includes a light emitting body, a pair of main electrodes and a pair of sub electrodes. The light emitting body includes discharge spaces disposed substantially parallel to each other. The main electrodes are disposed at opposite end portions of the light emitting body, respectively. The main electrodes induce an electrical discharge of a gas in the discharge spaces between the main electrodes. The sub electrodes are disposed between the main electrodes. The sub electrodes induce an electrical discharge of a gas in the discharge spaces between the sub electrodes. Resultantly, power consumption is reduced and uniformity of luminance is enhanced. Therefore, display quality of the display apparatus is enhanced.
Abstract:
A light source device in which the operating characteristic of the auxiliary light source can be improved, in which the starting property within the main discharge vessel is extremely advantageous and which has high reliability with respect to vibration resistance and impact strength without the disadvantage of a cost increase due to the complicated arrangement of the light source device, without reducing the proportion of good articles in the manufacture of the products, and without reducing the quality of the discharge lamp is achieved using a main discharge lamp mounted in a reflector with an auxiliary light source tightly held by the reflector or components which are adjacent to the reflector and without contact with the main discharge vessel.