Abstract:
The invention relates to a control system for controlling optical coherence tomography imaging means for imaging a subject, the control system being configured to perform the following steps of an imaging process: receiving (212) a scan data set from the subject being acquired by means of optical coherence tomography, the scan data set including one or several spectra (270), performing (214) data processing on the spectrum or on each of the several spectra of the scan data set (122), including per spectrum: determining (216) a scaling factor (274) for the spectrum (270, 370, 372, 374), scaling (218) a baseline spectrum (272) with a scaling factor (274), and removing (220) the scaled baseline spectrum (276) from the spectrum (270); and providing (224) a baseline corrected image data set of the subject for an image of the subject to be displayed, to an optical coherence tomography imaging system and to a corresponding method.
Abstract:
An apparatus for gradually supplying power to a source of illumination in a microscope, including a power transistor operatively arranged to provide a varying applied voltage to the source of illumination, and, means for biasing the power transistor with a pulse width modulated signal to incrementally increase the applied voltage to the source of illumination in a plurality of discrete steps. The invention also includes a method for gradually supplying power to a source of illumination in a microscope by biasing a power transistor with a pulse width modulated signal to incrementally increase the applied voltage to the source of illumination in a plurality of discrete steps.
Abstract:
An apparatus for automatically turning off a source of illumination in a microscope, comprising a switch operatively arranged to control the illumination source, and means for sensing inactivity of the switch and for turning off the illumination source after a predetermined time period of inactivity. The invention also includes a method for automatically turning off a source of illumination in a microscope, comprising the steps of monitoring activity of a switch operatively arranged to control the illumination source, and, turning off the illumination source after a predetermined time period of inactivity.
Abstract:
A non-contact tonometer comprises a fluid pump system configured and mounted to dissipate vibration energy to reduce the effect of vibrations on measurement components caused by the stroke of a piston with respect to a cylinder in the fuid pump system. In a preferred embodiment, a compression chamber receiving a piston and plenum chamber containing a pressure sensing device are spaced apart from one another and connected by a flow tube formed of a vibration damping material, and at least one vibration damping element is provided between the cylinder and a support frame of the non-contact tonometer.
Abstract:
An alignment system for an ophthalmic instrument comprises an optical axis along which an operator can directly view the patient's eye and the patient can fixate on a dark fixation target surrounded by a bright background that helps to illuminate the eye for operator viewing. A position detection system utilizing stored geometrical relationships determined by multiple regression during instrument calibration computes X-Y-Z alignment status of the instrument relative to a patient's eye based on local x-y position information from a pair of lateral detectors receiving corneally reflected light from a corresponding pair of lateral light sources. A heads-up display image is provided along an optical axis of the instrument for supplying instructive cues to an operator for moving the instrument to achieve alignment based on signal information from the position detection system, whereby the operator sees both a direct macro-image of the patient's eye and the display image. The alignment system is particularly suitable for use in handheld ophthalmic instruments.
Abstract:
The invention relates to a control system (130) for controlling optical coherence tomography imaging means for imaging a subject (190), the control system being configured to perform the following steps: receiving scan data (122) from the subject (190) being acquired by means of optical coherence tomography, performing data processing on the scan data (122), and obtaining image data (142) for an image (144) of the subject, and the processing system (130) further being configured to adapting, based on a change of a value, the value characterizing an axial position (z) of the subject (190) with respect to the OCT imaging means, between two sets of image data, at least one parameter of the OCT imaging means, to a processing system, to an OCT imaging system (100) and a corresponding method.
Abstract:
The invention relates to a control system (130) for an imaging system (100) for real-time imaging of a subject (190), using optical coherence tomography and video imaging, the control system (130) being configured to: control the imaging system (100) to determine, from a video image (152) of the subject (190), a position and/or an orientation (152) of a tissue of interest (192) in the subject (190), control the imaging system (100) to perform a scan of the subject (190) by means of optical coherence tomography, wherein a position and/or an orientation (144) of the scan is determined based on the position and/or orientation (154) of the tissue of interest (192) in the video image (152), and provide an optical coherence tomography image (142) of the subject (190), including the tissue of interest (192), based on the scan, to an imaging system (100) and a corresponding method.
Abstract:
Spectrometer systems are provided including a detector array; an imaging lens assembly coupled to the detector array, the imaging lens assembly including a first element of positive optical power followed by a second element of negative optical power and a positive optical power element split into two opposing identical singlets; a dispersive element coupled to the imaging lens assembly; and a fixed focus collimator assembly coupled to the dispersive element. Related imaging lens assemblies and collimator assemblies are also provided.
Abstract:
A new arrangement for the revolving stage of a polarizing microscope is presented. A stage well adapted to be removably fitted into and attached to the center of a revolving stage is provided with a housing, an inner sleeve adapted to fit within the housing and to move vertically within the housing, and a sample platform. In a preferred embodiment, the inner sleeve also moves rotationally. The stage well extends below the upper surface of the revolving stage with sufficient clearance to avoid interference with condenser and/or other components present below the revolving stage. Also presented is a microscope stage assembly comprising a revolving stage and a stage well attached to a center opening in the microscope revolving stage.