Abstract:
A NAND based non-volatile memory device can include a plurality of memory cells vertically arranged as a NAND string and a plurality of word line plates each electrically connected to a respective gate of the memory cells in the NAND string. A plurality of word line contacts can each be electrically connected to a respective word line plate, where the plurality of word line contacts are aligned to a bit line direction in the device.
Abstract:
Example embodiments relate to a non-volatile semiconductor memory device and a method of manufacturing the same. A semiconductor device includes an isolation layer protruding from a substrate, a spacer, a tunnel insulation layer, a floating gate, a dielectric layer pattern and a control gate. The spacer may be formed on a sidewall of a protruding portion of the isolation layer. The tunnel insulation layer may be formed on the substrate between adjacent isolation layers. The floating gate may be formed on the tunnel insulation layer. The floating gate contacts the spacer and has a width that gradually increases from a lower portion toward an upper portion. The dielectric layer pattern and the control gate may be sequentially formed on the floating gate.
Abstract:
A method of forming transistor gate structures in an integrated circuit device can include forming a high-k gate insulating layer on a substrate including a first region to include PMOS transistors and a second region to include NMOS transistors. A polysilicon gate layer can be formed on the high-k gate insulating layer in the first and second regions. A metal silicide gate layer can be formed directly on the high-k gate insulating layer in the first region and avoiding forming the metal-silicide in the second region. Related gate structures are also disclosed.
Abstract:
Methods of forming a thin film include applying a first reactant to a substrate, chemisorbing a first portion of the first reactant and physisorbing a second portion of the first reactant on the substrate, applying a first oxidizer to the substrate, chemically reacting the first oxidizer with the first portion of the first reactant to form a first solid material on the substrate, applying a second reactant to the first solid material, chemisorbing a first portion of the second reactant and physisorbing a second portion of the second reactant on the first solid material, applying a second oxidizer to the first solid material; and chemically reacting the second oxidizer with the first portion of the second reactant to form a second solid material on the first solid material.
Abstract:
A semiconductor memory device includes a bit line stack and a storage node contact hole which are aligned at bit line spacers formed at both side walls of the bit line stack and exposes a pad. The semiconductor memory device includes a multi-layered storage node contact plug in which a first storage node contact plug and a second storage node contact plug are sequentially formed. The first storage node contact plug is formed of titanium nitride and the second storage node contact plug is formed of polysilicon. An ohmic layer may be formed on the pad and under the first storage node contact plug. A barrier metal layer, which acts as a third storage node contact plug, may be formed on the second storage node contact plug.
Abstract:
An integrated circuit device includes a substrate that has a source region and a drain region formed therein. A gate pattern is disposed on the substrate between the source region and the drain region. A lower pad layer is disposed on the source region and/or the drain region and comprises a same crystalline structure as the substrate. A conductive layer is disposed on the lower pad layer such that at least a portion of the conductive layer is disposed between the lower pad layer and the gate pattern. An insulating layer is disposed between the gate pattern and both the lower pad layer and the conductive layer, and also between the conductive layer and the substrate.
Abstract:
A NAND based non-volatile memory device can include a plurality of memory cells vertically arranged as a NAND string and a plurality of word line plates each electrically connected to a respective gate of the memory cells in the NAND string. A plurality of word line contacts can each be electrically connected to a respective word line plate, where the plurality of word line contacts are aligned to a bit line direction in the device.
Abstract:
A NAND based non-volatile memory device can include a plurality of memory cells vertically arranged as a NAND string and a plurality of word line plates each electrically connected to a respective gate of the memory cells in the NAND string. A plurality of word line contacts can each be electrically connected to a respective word line plate, where the plurality of word line contacts are aligned to a bit line direction in the device.
Abstract:
A semiconductor device includes a substrate divided into an NMOS region and a PMOS region, a first gate pattern formed on the PMOS region, and a second gate pattern formed on the NMOS region. The first gate pattern includes a first gate oxide layer pattern, a metal oxide layer pattern, a silicon nitride layer pattern and a first polysilicon layer pattern that are sequentially stacked. The second gate pattern includes a second oxide layer pattern and a second polysilicon layer pattern. Related methods are also provided.
Abstract:
A capacitor of a semiconductor device includes a cylinder type capacitor lower electrode, a dielectric layer, and an upper electrode. The upper electrode includes a metallic layer on the dielectric layer and a doped polySi1-xGex layer stacked on the metallic layer. Methods of forming these capacitors also are provided.