Abstract:
Provided is a method of manufacturing a printed circuit board. In an embodiment, the method includes forming a prepreg layer via a reel method, forming a conductive film for forming a circuit pattern on at least one surface of the prepreg layer; and forming a predetermined circuit pattern on the conductive film. In an embodiment, the prepreg layer has a thickness of at most about 0.15 mm and contains a fiber material and a resin material. In an embodiment, the content of the resin material in the prepreg layer is about 70% or less by volume. In an embodiment, the prepreg layer is composed of at least one prepreg layer.
Abstract:
Provided is a method of manufacturing a printed circuit board. In an embodiment, the method includes forming a prepreg layer via a reel method, forming a conductive film for forming a circuit pattern on at least one surface of the prepreg layer; and forming a predetermined circuit pattern on the conductive film. In an embodiment, the prepreg layer has a thickness of at most about 0.15 mm and contains a fiber material and a resin material. In an embodiment, the content of the resin material in the prepreg layer is about 70% or less by volume. In an embodiment, the prepreg layer is composed of at least one prepreg layer.
Abstract:
A parent or master substrate for a semiconductor package is provided, which can provide a plurality of unit substrates by cutting into pieces for producing a semiconductor device. The parent substrate includes an insulation layer, conductor patterns formed on first and second surfaces of the insulation layer, and PSR (photo solder resist) layers respectively formed on the first and second surfaces of the insulation layers and covering the conductor patterns. The parent substrate includes an upper part and a lower part divided by a reference surface which passes through the center of the insulation layer. When an equivalent thermal expansion coefficient αupper of the upper part is defined by the Equation of α upper = ∑ i = 1 n α i × E i × v i ∑ i = 1 n E i × v i , where αi is respective thermal expansion coefficients of, Ei is respective elastic moduli of, and vi is respective volume ratios of first through nth components constituting the upper part (e.g., insulation layer, conductor patterns, and PSR layers of the upper part), and an equivalent thermal expansion coefficient αlower of the lower part is defined by the Equation of α lower = ∑ j = 1 m α j × E j × v j ∑ j = 1 m E j × v j , where αj is respective thermal expansion coefficients of, Ej is respective elastic moduli of, and vj is respective volume ratios of first through mth components constituting the lower part (e.g., insulation layer, conductor patterns, and PSR layers of the lower part), a equivalent thermal expansion ratio (αupper/αlower) of αupper to αlower is selected to be within a range of 0.975 through 1.165.
Abstract:
A semiconductor device and a method for measuring an analog channel resistance thereof are provided. The semiconductor device includes a substrate, a gate insulating layer and a gate formed on the substrate, a source and a drain formed in the substrate and at both sides of the gate, a source sense connected to the source, and a drain sense connected to the drain.
Abstract:
A method of measuring flat-band status capacitance of a gate oxide in a MOS transistor device is disclosed. According to the method of measuring flat-band status capacitance of gate oxide in MOS transistor device, flat-band status capacitance of gate oxide in MOS transistor device can be automatically measured and immediately analyzed by using a characteristics measuring system that changes in accordance with a gate voltage.
Abstract:
Provided is a vehicle tire with an RFID tag. The damage of the RFID tag or non-recognition problem can be prevented when a severe operating atmosphere is applied to the tire. The RFID tag is mounted on a side of the tire, apart from a bead included on an inner circumference of the tire, within a distance of 0.74 in a radial direction from the bead toward a belt attached to an outer circumference of the tire assuming that the distance from the bead to the belt is 1.
Abstract:
There are provided a printed circuit board having a structure for relieving a stress concentration on an outer most lead of leads, due to a difference in thermal expansion coefficients between the semiconductor device and the printed circuit board when the semiconductor device is mounted on the printed circuit board. The printed circuit board includes an inner lead portion to be connected to the semiconductor device. The inner lead portion includes a plurality of leads, arranged in parallel with a same pitch in a predetermined area, and additional leads located near both ends of the predetermined area in which the plurality of leads are arranged in parallel, respectively, wherein each of the plurality of leads has a pitch smaller than 30 μm and a width of the additional lead is wider than 20 μm. There are also provided a semiconductor chip package equipped with the printed circuit board according to the present invention.
Abstract:
A semiconductor device and a method for measuring an analog channel resistance thereof are provided. The semiconductor device includes a substrate, a gate insulating layer and a gate formed on the substrate, a source and a drain formed in the substrate and at both sides of the gate, a source sense connected to the source, and a drain sense connected to the drain.
Abstract:
Disclosed is a system and method for automatically measuring carrier density distribution by using capacitance-voltage characteristics of a MOS transistor device. System comprises an automatic probe station for measurement of an object wafer, the automatic probe station being electrically connected to the wafer; a capacitor measuring unit having a high frequency terminal and a low frequency terminal; and a control computer for being respectively connected the automatic probe station and the capacitor measuring unit, wherein the high frequency terminal is connected to a gate of the wafer and the low frequency terminal is connected to a substrate of the wafer.
Abstract:
Provided is a method of manufacturing a printed circuit board. In an embodiment, the method includes forming a prepreg layer via a reel method, forming a conductive film for forming a circuit pattern on at least one surface of the prepreg layer; and forming a predetermined circuit pattern on the conductive film. In an embodiment, the prepreg layer has a thickness of at most about 0.15 mm and contains a fiber material and a resin material. In an embodiment, the content of the resin material in the prepreg layer is about 70% or less by volume. In an embodiment, the prepreg layer is composed of at least one prepreg layer.