Abstract:
A method of setting luminance levels of a solid-state light sources of a luminaire with programmable light distribution is provided. The method includes obtaining a file describing a desired light beam distribution, converting the desired light beam distribution into luminance levels for the solid-state light sources, and applying the luminance levels to the solid-state light sources to cause the luminaire to output the desired light beam distribution.
Abstract:
A luminaire having a plurality of power sockets arranged over its housing is disclosed. In some embodiments, the luminaire includes a driver operatively coupled with all (or some sub-set) of the power sockets and configured to control the light output of a modular solid-state light source operatively interfaced therewith. In some such embodiments, the luminaire also includes a power-line communication (PLC) module configured to output a PLC signal utilized by the driver in controlling the modular light source's output. In some other embodiments, the modular light source includes the driver, which may utilize a PLC signal, a command signal received from a remote source, or both, in controlling light output. In some cases, the modular solid-state light sources may allow the luminaire to produce a target light beam distribution utilizing a minimal or otherwise reduced quantity of such light sources, reducing cost and difficulty of installation and commissioning.
Abstract:
The exemplary embodiments of the present invention include forming a photoconductor thin film on a front surface of a substrate; forming a photoconductor thin film pattern by patterning the photoconductor thin film; and forming a metal electrode on the photoconductor thin film pattern.
Abstract:
Provided are a substrate treating unit, and substrate treating apparatus and method using the same. Two nozzle arms are provided, and photoresist liquid nozzles and an organic solvent nozzle are installed in each of the nozzle arms. A temperature of a photoresist liquid flowing into the photoresist liquid nozzles and a temperature of an organic solvent flowing into the organic solvent nozzle are maintained by a temperature control fluid supplied through the same passage. Also, a waiting port in which a nozzle arm used in a process temporarily waits is provided. The organic solvent is provided to a photoresist liquid nozzle that is not used in a process and is not provided to a photoresist liquid nozzle used in the process.
Abstract:
Provided is a method of manufacturing a solar cell, wherein a solar cell is manufactured by combining a damage removal etching process, a texturing process and an edge isolation process. The method is advantageous in that RIE and DRE are conducted, and then DRE/PSG and/or an edge isolation removal process are simultaneously conducted, so that the movement of a substrate (that is, a wafer) is minimized, thereby reducing the damage rate of the substrate.
Abstract:
In an apparatus for performing a substrate developing process, a first washing tank and a second washing tank are disposed on both sides of a substrate support section for supporting the substrate opposite to each other to wash a developing nozzle. The developing nozzle moves in a horizontal direction from the first washing tank toward the second washing tank and supplies a developing solution onto the substrate in the meantime. After supplying the developing solution, the developing nozzle is received in the second washing tank, and the developing solution adhered to the developing nozzle is removed by a washing solution in the second washing tank.
Abstract:
Provided is a folded dipole antenna including a meander line formed on a photoconductive substrate, characterized by an input impedance of several kΩ, which is much higher than that of a conventional dipole antenna, due to optimization of a horizontal length, a line interval, a width, and a line number of the meander line. Accordingly, use of the folded dipole antenna greatly improves an impedance matching characteristic between the antenna and a photomixer having an output impedance of 10 kΩ or more, and accordingly an output of a THz continuous wave.
Abstract:
A phase change memory device includes a plurality of phase change structures, each with a phase change material layer, disposed on a semiconductor substrate, a first protective layer formed to cover surfaces of the plurality of phase change structures, an atom adsorption enhancement layer formed on a surface of the first protective layer, and a second protective layer formed on a surface of the atom adsorption enhancement layer.
Abstract:
Provided is a metal interconnection structure of a semiconductor device, including a first metal film pattern disposed on an upper part of an insulation film of a semiconductor substrate; an intermetallic dielectric film having a metal contact plug in which a barrier layer, a metal film for contact plug and a second metal film are sequentially disposed, on the first metal film pattern; and a second metal film pattern disposed on the metal contact plug and intermetallic dielectric film and connected to the metal contact plug.
Abstract:
Provided is a metal interconnection structure of a semiconductor device, including a first metal film pattern disposed on an upper part of an insulation film of a semiconductor substrate; an intermetallic dielectric film having a metal contact plug in which a barrier layer, a metal film for contact plug and a second metal film are sequentially disposed, on the first metal film pattern; and a second metal film pattern disposed on the metal contact plug and intermetallic dielectric film and connected to the metal contact plug.