Abstract:
Method for producing stable capsules which comprises the steps of providing a first component comprising a wax-like substance and a second component comprising a substance to be encapsulated, dissolved or dispersed in a liquid medium, homogeneously mixing the first and second components, dispersing the mixture in an aqueous solution using at least one dispersion auxiliary at a temperature above the melting point of the wax-like substance to prepare a microemusion, and cooling and diluting the microemulsion.
Abstract:
The present invention relates to a process which comprises: providing a substrate having a surface; applying a dispersion to the surface, wherein the dispersion comprises at least one liquid dispersant, and electrostatically stabilised silver nanoparticles having a zeta potential of from −20 to −55 mV in the dispersant at a pH value of from 2 to 10; and heating one or both of the surface and the dispersion applied thereon to a temperature of from 50° C. below the boiling point of the dispersant to 150° C. above the boiling point of the dispersant, to form a conductive coating on the surface.
Abstract:
The present invention relates to a substrate with at least one section having a surface decoration and a coating between the surface and the decoration. The coating can be peeled from the surface, and is prepared from an aqueous anionic polyurethane-polyurea dispersion which are free from co-solvents.
Abstract:
Printable compositions comprising: (a) 5 to 40 parts by weight of silver nanoparticles having a maximum effective diameter of 150 nm, as determined by laser correlation spectroscopy; (b) 50 to 99.5 parts by weight of water; (c) 0.01 to 15 parts by weight of a dispersing agent; (d) 0.5 to 5 parts by weight of a film former; and (g) 30 to 70 parts by weight of metal particles having a maximum effective diameter of 10 μm, as determined by laser correlation spectroscopy; wherein the printable composition has a viscosity of at least 1 Pa·s; processes for producing electrically conductive coatings using such compositions and electrically conductive coatings prepared thereby.
Abstract:
Printable compositions comprising: (a) 5 to 40 parts by weight of silver nanoparticles having a maximum effective diameter of 150 nm, as determined by laser correlation spectroscopy; (b) 50 to 99.5 parts by weight of water; (c) 0.01 to 15 parts by weight of a dispersing agent; (d) 0.5 to 5 parts by weight of a film former; and (g) 30 to 70 parts by weight of metal particles having a maximum effective diameter of 10 μm, as determined by laser correlation spectroscopy; wherein the printable composition has a viscosity of at least 1 Pa·s; processes for producing electrically conductive coatings using such compositions and electrically conductive coatings prepared thereby.
Abstract:
Printable compositions comprising: (a) 5 to 40 parts by weight of silver nanoparticles having a maximum effective diameter of 150 nm, as determined by laser correlation spectroscopy; (b) 50 to 99.5 parts by weight of water; (c) 0.01 to 15 parts by weight of a dispersing agent; (d) 0.5 to 5 parts by weight of a film former; and (g) 30 to 70 parts by weight of metal particles having a maximum effective diameter of 10 μm, as determined by laser correlation spectroscopy; wherein the printable composition has a viscosity of at least 1 Pa·s; processes for producing electrically conductive coatings using such compositions and electrically conductive coatings prepared thereby.
Abstract:
The present invention relates to a process for producing nanosize to microsize particles of compounds of the rare earth metals and other transition metals and also for producing colloid-chemically stable sols of these particles.
Abstract:
Process for producing metal particle sols having a metal particle content of ≧1 g/l, comprising the steps of a) reacting a metal salt solution with a solution containing hydroxide ions b) reacting the solution obtained from step a) with a reducing agent, wherein at least one of the solutions in step a) comprises a dispersing assistant, metal particles produced by the process and the use thereof.
Abstract:
The invention relates to a new co-crystal of 4-{[(6-chloropyrid-3-yl)methyl](2,2-difluoroethyl)amino}furan-2(5H)-one (I) with salicylic acid, and also to processes for preparation thereof and use thereof.
Abstract:
Process for producing metal particle sols having a metal particle content of ≧1 g/l, comprising the steps of a) reacting a metal salt solution with a solution containing hydroxide ions b) reacting the solution obtained from step a) with a reducing agent, wherein at least one of the solutions in step a) comprises a dispersing assistant, metal particles produced by the process and the use thereof.