Abstract:
A method for manufacturing a semiconductor device may include: forming a main magnetic field having an axis, and forming a subsidiary magnetic field substantially parallel to the axis; applying an alternating current along a path between the main and the subsidiary magnetic fields; allowing a gas to flow along a flow path along the path of the current so that a gas plasma is generated from the gas; providing the gas plasma into a chamber separated from a position where the gas plasma is generated; and performing a process for manufacturing a semiconductor device by employing the gas plasma.
Abstract:
Embodiments of the invention provide a wafer aligning apparatus and a wafer aligning method. In one embodiment, the wafer aligning apparatus comprises an imaging unit adapted to take an image of a wafer being transferred from a load lock chamber to a transfer chamber and adapted to convert the image into digital signals, and a signal processing unit adapted to calculate a center alignment correction value for the wafer by comparing the digital signals to a master image stored in the signal processing unit. The wafer aligning apparatus further comprises a robot controller adapted to receive the center alignment correction value from the signal processing unit and adapted to control a transfer robot in accordance with the center alignment correction value to provide the wafer to a process chamber such that the center of the wafer is substantially aligned.
Abstract:
Chemical vapor deposition (CVD) processing equipment for use in fabricating a semiconductor device requiring deposition of an insulation layer or a metal layer includes a chamber having an exhaust line in a lower central portion thereof, a heater block for supporting a wafer to be supplied in an interior of the chamber, the heater block having a heating plate in an interior thereof, a support shaft for supporting the heater block, and an electrical wire for providing an electrical connection to the heating plate. The support shaft extends through a bottom of the chamber. The electrical wire extends through the bottom of the chamber within the support shaft.
Abstract:
A holder of rechargeable battery cells includes a lower frame, a plurality of housings, a multiplicity of heat sinks and an upper frame to dissipate heat generated from the battery cells. The lower frame has a vertical rim and horizontal flanges extending inwardly from the bottom of the rim to define a receptacle. Each tubular housing accommodating the battery cells therein is received in the receptacle and supported by the lower frame. A pair of heat sink members are attached to opposing sides of each of the housings and each of the heat sink members has a large number of fins. A retainer including a frame, stay rods and securing members is used to secure the holder.
Abstract:
A method for manufacturing a semiconductor device may include: forming a main magnetic field having an axis, and forming a subsidiary magnetic field substantially parallel to the axis; applying an alternating current along a path between the main and the subsidiary magnetic fields; allowing a gas to flow along a flow path along the path of the current so that a gas plasma is generated from the gas; providing the gas plasma into a chamber separated from a position where the gas plasma is generated; and performing a process for manufacturing a semiconductor device by employing the gas plasma.
Abstract:
Embodiments of the invention provide a wafer aligning apparatus and a wafer aligning method. In one embodiment, the wafer aligning apparatus comprises an imaging unit adapted to take an image of a wafer being transferred from a load lock chamber to a transfer chamber and adapted to convert the image into digital signals, and a signal processing unit adapted to calculate a center alignment correction value for the wafer by comparing the digital signals to a master image stored in the signal processing unit. The wafer aligning apparatus further comprises a robot controller adapted to receive the center alignment correction value from the signal processing unit and adapted to control a transfer robot in accordance with the center alignment correction value to provide the wafer to a process chamber such that the center of the wafer is substantially aligned.
Abstract:
An ion source element, an ion implanter having the ion source element and a method of modifying the ion source element are provided. In the ion source element, a chamber may have a cavity divided into a plurality of inner sections configured substantially perpendicularly to an axis defined through centers of ends of the cavity. The larger inner sections may be at, or near, a center of the cavity and become smaller toward the ends of the cavity. A filament may be disposed at one end of the chamber to emit thermal electrons. A repeller may extend into the chamber through the other end of the chamber. An inlet may be formed in a first cavity wall to introduce gas having a dopant species into the chamber. A beam slit may be formed in a second cavity wall, opposite the inlet, of the chamber to extract an ionized species of the gas from the chamber.
Abstract:
A method for generating a plasma. A gas flows along a flow path having the displacement identical to the lines of magnetic force of the main magnetic field, and high frequency alternating current is applied to the gas, thereby generating a gas plasma. For example, a gas is flowed through a pipe in a first direction. Electricity is conducted through the pipe in substantially the first direction. And a magnetic field is applied along a second direction (e.g., perpendicular to the first direction) to the gas flowing in the pipe such that a plasma is induced in the pipe.
Abstract:
An apparatus for catching byproducts in semiconductor device processing equipment is disposed in an exhaust line between a process chamber and a vacuum pump. The apparatus includes a cylindrical trap housing member, an upper cover and a lower cover covering the upper part and lower part of the trap housing, respectively, a heater disposed under the upper cover, first and second cooling plates disposed in the trap housing, a post spacing the cooling plates, apart and a cooling system for cooling respective portions of the apparatus. The cooling system includes a delivery pipe for supplying refrigerant, a discharge pipe for discharging the refrigerant from the apparatus, first cooling piping extending through each cooling plate and connected to the delivery and discharge pipes, and second cooling piping extending helically along the outer circumferential surface of the trap housing.
Abstract:
A metal gasket for a semiconductor fabrication chamber capable of preventing base plate metal contamination in the chamber, wherein the metal gasket includes a diffusion barrier layer interposed between a base plate and an anti-corrosive coating layer, and wherein the diffusion barrier layer prevents elements of the base plate from being diffused to the anti-corrosive coating layer. Accordingly, the diffusion barrier layer prevents attack on the anti-corrosive coating layer.