Abstract:
The invention relates to anodes for X-ray tubes and a method of producing same. Several layers are deposited one after another onto a substrate by means of chemical vapour deposition. The proposed combination of layers results in a proper bond to the substrate. The combination comprises a first layer of molybdenum or a molybdenum alloy; a second layer of a tungsten-molybdenum alloy and a third layer of tungsten or a tungsten alloy. The composition of the second layer varies over its thickness.
Abstract:
In an X-ray tube rotary anode having a supporting body (1) of molybdenum alloy, a target (2) of tungsten alloy, and a rough tungsten layer, applied by flame spraying to the whole surface of the anode except the focal path (4), for improving heat radiation, the rough tungsten layer does not adhere well to the tungsten alloy target, and particles of the rough tungsten layer may become detached in use, degrading the performance of the X-ray tube. To alleviate this problem, the whole surface of the anode, except the focal path (4), is blasted with steel grit, steel grit particles embedded in the anode are removed with acid, and the whole surface of the anode, except the target (2), is coated with a rough tungsten layer (3) by plasma spraying.
Abstract:
A rotary anode for an X-ray tube in which the surface remote from the electron target area is covered with a metal oxide coating comprising at least 94 percent by weight Al.sub.2 O.sub.3 and at least 2 percent by weight TiO.sub.2.
Abstract translation:用于X射线管的旋转阳极,其中远离电子靶区域的表面覆盖有包含至少94重量%的Al 2 O 3和至少2重量%的TiO 2的金属氧化物涂层。
Abstract:
A layer of W or of a W-alloy is provided on a forged supporting member of an X-ray rotary anode by plasma spraying. By carrying out the plasma spraying at reduced pressure, a layer is obtained which is suitable as a target layer for X-ray rotary anodes.
Abstract:
A laminated rotary anode for use in an X-ray tube is provided having a structure of a first electron target layer being essentially of a first tungsten alloy, a second intermediate layer bonded to the electron target layer and consisting essentially of either tungsten or a second alloy of tungsten and having a yield point lower than that of the first tungsten alloy, and a support layer bonded at a face of the second layer with the support layer consisting essentially of one of molybdenum and molybdenum alloy.
Abstract:
Method of manufacturing laminated rotary anodes for use in x-ray tubes in which in a first step a laminated disc-shaped member is jointed by a single blow to another disc-shaped member, the diameters of the members being increased and their thicknesses decreased. The rotary anode is made from the resulting assembly. The laminated disc-shaped assembly consists at the target area, for example of a tungsten-rhenium alloy and at the other surface of tungsten or an alloy between capable of being shaped than the first mentioned tungsten-rhenium alloy.