Abstract:
A method for solder bonding a photodiode or an array of photodiodes to a substrate, the photodiode(s) tilted at a predetermined angle, uses a pair solder bumps placed on a photodiode chip opposite a corresponding pair of solder pads placed on the substrate. When the photodiode chip is placed on the substrate, with the solder bumps therebetween, the solder is melted and undergoes a reflow over the surface of the pads. The shape of the pads and the location of the solder bumps on the pads causes the surface tension of the solder to tilt the chip by pulling it to one side.
Abstract:
A multimode laser beam depolarization and combining architecture integrates a combiner for polarized multimode light beams with a multimode beam depolarizer, that produces a composite depolarized output beam optimized for application to a Raman optical amplifier. A high-order depolarizing 45null waveplate is used to effectively depolarize multimode laser beams produced by a Fabry-Perot (FP) laser. The high-order 45null waveplate has a length that achieves multi mode dispersion-dependent depolarization of the beam over its travel path through the crystal, and may comprise a birefringent material such as YVO4 having a large difference between its extraordinary and ordinary indices of refraction.
Abstract:
A wavelength blocker including an input port for launching an input beam of light, first dispersing means for dispersing the input beam of light according to wavelength, an array of independently addressable elements for selectively blocking a portion of the dispersed beam of light, second dispersing means for receiving the passed dispersed beam of light and for producing a single multiplexed beam of light therefrom, and an output port for transmitting a modified output beam of light. The array of independently addressable elements are designed such that the wavelength blocker is capable of blocking a variable number of non-consecutive channels without significantly affecting the unblocked channels.
Abstract:
An optical device comprises a dispersion element, a reflector, and an angle-to-offset (ATO) element. The angle-to-offset (ATO) element has optical power. The dispersion element is positioned in or near a focal plane of the ATO element and adapted to separate an input wavelength division multiplexed (WDM) light beam received from an input port of the optical device into two or more channel light beams. The reflector is positioned in or near a focal plane of the ATO element and arranged to receive the channel light beams from the dispersion element via the ATO element. The reflector is designed to reflect at least one of the channel light beams toward a respective output port of the optical device. With this arrangement, the dispersion element, reflector and ATO element cooperate to optically demultiplex the input WDM light beam. Additional optical elements arranged in the propagation path between the reflector and the output port(s) and/or between the input port and the dispersion element can be used to provide further optical signal processing functionality such as dynamic channel equalization, add drop, or wavelength switching.
Abstract:
Optical waveplates made of polyethylene naphthalate (PEN) exhibit good optical properties comparable to or exceeding the respective properties of prior art waveplates made of polyimides (PI). PEN waveplates are a technically and commercially reasonable alternative to PI waveplates.
Abstract:
A micro-optical delay element for a time-division multiplexing scheme is disclosed wherein two light beams are provided to a beam splitter/combiner (BS/C) in the absence of optical fibre. At least one beam exiting a modulator is collimated and reaches the (BS/C) unguided as a substantially collimated beam. This obviates a requirement for polarization controllers and polarization maintaining optical fiber
Abstract:
A control system is designed to control an optical cross-connect having a switch core defined by first and second independently movable beam deflectors capable of selectively defining an optical path between a pair of ports of the optical cross-connect. An optical element having optical power is arranged in a propagation path of light beams between the first and second beam deflectors. The control system includes a pilot light source, an optical sensor associated with each beam deflector, and a feedback path. The a pilot light source inserts a pilot light into the switch core colinearly with live traffic. The optical sensor detects a predetermined geometric property of the pilot light emerging from the switch core. This predetermined geometric property is unambiguously associated with an angular position of the associated beam deflector. The feedback path actively controls a position of the associated beam deflector based on the detected geometric property.
Abstract:
A high capacity cross-connect in which a 3D switch core includes express paths that facilitate cascading of cross-connect blocks. A light beam propagates from an input waveguide 18 to a first MEMS mirror, which deflects the light beam to either an express optical path or a switching optical path. In the express optical path, the light beam propagates from the first MEMS mirror to a predetermined output waveguide, which is determined by the design of the switch core. In the switching optical path, the light beam propagates from the first MEMS mirror to a second MEMS mirror, which deflects the light beam to a selected one of a set of two or more output waveguides associated with the second MEMS mirror.
Abstract:
Automated manufacturing in the fiber optics industry has introduced a series of new problems due to the small size of the parts being assembled and the precise optical alignments required. However, processes requiring the manual assembly of parts using glue are slowly being replaced by automated processes involving the laser welding of metallically encased optical parts. Unfortunately, almost every step in the process causes a small degree of misalignment, which may cause the device to fall below transmission standards. The present invention provides a method of assembling an optical device which includes special steps that involve re-aligning the elements in the optical device after other steps in the method have caused a misalignment. In particular, the method of the present invention includes testing the alignment of the optical elements at several stages throughout the assembly process, and applying addition asymmetric welds to the finished product to improve the transmission results.
Abstract:
The present invention relates to an isolated polarization beam splitter or combiner, for joining light from different inputs into one common port, and for dividing a beam of light into orthogonal polarizations. In both modes of operation, the splitter/combiner provides isolation preventing transmission of light in a reverse direction. As a splitter, a beam of light is separated through a birefringent material into sub-beams of orthogonal polarization components, and each sub-beam is passed through a non-reciprocal polarization rotator to rotate the polarization so that a reflected beam, or other counter-transmitted light cannot return on the same path through the birefringent material to the source. As a combiner, two separate beams of light are launched with known orthogonal polarizations into a first birefringent material, passed through a non-reciprocal polarization rotator and then combined as orthogonal polarizations into a single output port. Advantageously, by providing the splitting or combining function in a same isolating device, insertion losses are reduced and the device is smaller and more cost effective. As a further advantage, a polarization beam splitter/combiner is provided in which the optical path length for the two separated orthogonal polarizations traveling through a birefringent crystal is equal, while still permitting the economical use of birefringent crystals with an uncollimated beam of light.