Abstract:
A RGB phosphor system for a carbon nanotube (CNT)/field emission device (FED) display operated between about 4-10 kV. The RGB phosphor system is formed on an interior surface of a screen of the CNT/FED display. The RGB phosphor system includes ZnS:Cu, Al (green phosphor), ZnS:Ag,Cl (blue phosphor) and Y2O2S:Eu+3 (red phosphor). The average particle size for each of the green, blue and red phosphors should be about 3-4 microns.
Abstract:
A luminescent display has a plurality of individual discreet phosphor elements (33) on a glass plate separated from one another, filler material (45) between the phosphor elements and reflective film over the individual phosphor elements (33). The filler material (45) can be white and contact the sides of the phosphor elements (33). The filler material (45) can have a peak height that is at least half of the height of the individual phosphor elements (33) between which the filler material (45) lies.
Abstract:
A RGB phosphor system for a carbon nanotube (CNT)/field emission device (FED) display operated between about 4-10 kV. The RGB phosphor system is formed on an interior surface of a screen of the CNT/FED display. The RGB phosphor system includes ZnS:Cu, Al (green phosphor), ZnS:Ag,Cl (blue phosphor) and Y2O2S:Eu+3 (red phosphor). The average particle size for each of the green, blue and red phosphors should be about 3-4 microns.
Abstract:
A liquid crystal display includes a liquid crystal display front end component joined to a field emission device backlighting unit. The field emission device backlighting unit has a cathode and an anode. The cathode is provided with a plurality of emitter cells. The anode is provided with a screen structure having a plurality of phosphor elements that are each formed as a substantially continuous stripe. Each of the phosphor elements has a plurality of the emitter cells aligned therewith.
Abstract:
A luminescent display has a plurality of individual discreet phosphor elements (33) on a glass plate separated from one another, filler material (45) between the phosphor elements and reflective film over the individual phosphor elements (33). The filler material (45) can be white and contact the sides of the phosphor elements (33). The filler material (45) can have a peak height that is at least half of the height of the individual phosphor elements (33) between which the filler material (45) lies.