Abstract:
A process for manufacturing a metallized part using the island coating method, including spray depositing a primer layer, basecoat layer, or combined primer/basecoat layer. Each layer contains an increased amount of film forming polymer by using liquid CO.sub.2 as a supplemental carrier along with a reduced amount of organic solvent carrier thereby reducing waste disposal costs and environmental concerns. Further, this modified island coating system can be used to deposit layers of 1.5 to 2.0 mils thick and maintain the aesthetic properties of the metallizing island coating system at a reduced cost and with minimal variability among parts.
Abstract:
The present invention relates to an improvement for gas-phase olefin polymerization process having relatively high bed bulk density. The improvement involves the use of mixed external electron donors when polymerizing propylene in a gas-phase reactor having a polymer bed with a bulk density greater than 128 kg/m3, optionally with one or more comonomers, wherein the mixed electron donor system comprises at least a first external electron donor and a second external electron donor, and wherein the first external electron donor is a carboxylate compound.
Abstract:
The present disclosure provides a polymerization process for the production of a high melt flow propylene impact copolymer. The process includes contacting an active propylene-based polymer having a melt flow rate greater than about 100 g/10 min with one or more olefins in a polymerization reactor to form the propylene impact copolymer with a melt flow rate greater than about 60 g/10 min. The production of the high melt flow propylene impact copolymer may occur in one or more polymerization reactors, utilizing standard hydrogen concentration, and no visbreaking.
Abstract:
Propylene impact copolymers (ICPs) are provided which comprise: (a) a matrix phase which comprises from 60 to 95 weight % of a polypropylene polymer containing from 0 to 6 mole % of units derived from one or more alpha-olefins other than propylene, and (b) a dispersed phase which comprises from 5 to 40 weight % of a copolymer derived from a first comonomer which can be either propylene or ethylene together with a second alpha-olefin comonomer. The ICP is further characterized by having a beta/alpha ratio less than or equal to 1.1. The ICPs of the present invention are particularly well suited for applications requiring clear, tough polymers such as thin walled injection molded articles for frozen food packaging applications.
Abstract:
This invention relates to a method and system for proportionating, mixing, pressurizing, heating and supplying a coating formulation, wherein a microporous membrane injector/mixer located in the relevant section of the system so that undesirable precipitation of solid polymer from the coating formulation is subsequently avoided.
Abstract:
Propylene impact copolymers (ICPs) are provided which comprise: (a) a matrix phase which comprises from 60 to 95 weight % of a polypropylene polymer containing from 0 to 6 mole % of units derived from one or more alpha-olefins other than propylene, and (b) a dispersed phase which comprises from 5 to 40 weight % of a copolymer derived from a first comonomer which can be either propylene or ethylene together with a second alpha-olefin comonomer. The ICP is further characterized by having a beta/alpha ratio less than or equal to 1.1. The ICPs of the present invention are particularly well suited for applications requiring clear, tough polymers such as thin walled injection molded articles for frozen food packaging applications.
Abstract:
The present invention relates to an improvement for gas-phase olefin polymerization process having relatively high bed bulk density. The improvement involves the use of mixed external electron donors when polymerizing propylene in a gas-phase reactor having a polymer bed with a bulk density greater than 128 kg/m3, optionally with one or more comonomers, wherein the mixed electron donor system comprises at least a first external electron donor and a second external electron donor, and wherein the first external electron donor is a carboxylate compound.
Abstract translation:本发明涉及具有较高床堆密度的气相烯烃聚合方法的改进。 该改进涉及当在具有大于128kg / m 3的堆积密度的聚合物床的气相反应器中聚合丙烯时,使用混合的外部电子给体,任选地具有一种或多种共聚单体,其中混合电子给体系统至少包括 第一外电子给体和第二外电子给体,其中第一外电子给体是羧酸酯化合物。
Abstract:
The present disclosure provides a polymerization process for the production of a high melt flow propylene impact copolymer. The process includes contacting an active propylene-based polymer having a melt flow rate greater than about 100 g/10 min with one or more olefins in a polymerization reactor to form the propylene impact copolymer with a melt flow rate greater than about 60 g/10 min. The production of the high melt flow propylene impact copolymer may occur in one or more polymerization reactors, utilizing standard hydrogen concentration, and no visbreaking.
Abstract:
The present disclosure provides a polymerization process for the production of a high melt flow propylene impact copolymer. The process includes contacting an active propylene-based polymer having a melt flow rate greater than about 100 g/10 min with one or more olefins in a polymerization reactor to form the propylene impact copolymer with a melt flow rate greater than about 60 g/10 min. The production of the high melt flow propylene impact copolymer may occur in one or more polymerization reactors, utilizing standard hydrogen concentration, and no visbreaking.
Abstract:
The present disclosure provides a polymerization process for the production of a high melt flow propylene impact copolymer. The process includes contacting an active propylene-based polymer having a melt flow rate greater than about 100 g/10 min with one or more olefins in a polymerization reactor to form the propylene impact copolymer with a melt flow rate greater than about 60 g/10 min. The production of the high melt flow propylene impact copolymer may occur in one or more polymerization reactors, utilizing standard hydrogen concentration, and no visbreaking.