Abstract:
A method for aligning nanotubes. In one embodiment, a method is used to align nanotubes. A bath with nanotubes dispersed on the surface of a solution is provided. An attachment surface is provided to attach the nanotubes. The attachment surface is placed into the bath at an angle of around ninety degrees relative to a surface of the bath. The attachment surface is removed from the bath at a rate sufficient to apply a velocity to the nanotubes in the bath of nanotubes such that the nanotubes are aligned on the attachment surface in a direction that is substantially parallel to the direction at which the substrate is removed to form a plurality of aligned nanotubes.
Abstract:
A nanotube mesh and method for forming the nanotube mesh. The nanotube mesh has a first layer and a second layer. The first layer has a first plurality of nanotubes aligned in a direction approximately parallel to each other, the first layer having a length, a width, and a thickness of at least a dimension of a single nanotube. The second layer has a second plurality of nanotubes aligned in a direction approximately parallel to each other, the second layer having a length, a width, and a thickness of at least a dimension of a single nanotube, wherein the first layer is attached to the second layer at a set of points to form the nanotube mesh.
Abstract:
A method for aligning nanotubes. In one embodiment, a method is used to align nanotubes. A bath with nanotubes dispersed on the surface of a solution is provided. An attachment surface is provided to attach the nanotubes. The attachment surface is placed into the bath at an angle of around ninety degrees relative to a surface of the bath. The attachment surface is removed from the bath at a rate sufficient to apply a velocity to the nanotubes in the bath of nanotubes such that the nanotubes are aligned on the attachment surface in a direction that is substantially parallel to the direction at which the substrate is removed to form a plurality of aligned nanotubes.
Abstract:
Apparatus to produce carbon nanotubes (CNTs) of arbitrary length using a chemical vapor deposition (CVD) process reactor furnace is described, where the CNTs are grown axially along a portion of the length of the furnace. The apparatus includes a spindle and a mechanism for rotating the spindle. The spindle located within a constant temperature region of the furnace and operable to collect the CNT around the rotating spindle as the CNT is grown within the furnace.
Abstract:
In an embodiment of the disclosure, there is provided a method to reduce porosity in a composite structure. The method adds an additive to a resin material to form an additive-resin mixture. The method combines the additive-resin mixture with reinforcement fibers to form a composite prepreg material, and in turn, a composite structure. The method heat cures the composite structure in a heating apparatus under a vacuum device at the resin cure temperature, heats the composite structure to an increased temperature above the additive phase transition temperature, and maintains the increased temperature for a time period sufficient. The method reduces the increased temperature back down to the resin cure temperature to allow the additive gas to undergo a phase transition to a condense phase, resulting in a substantially reduced vacuum pressure, resulting in a reduction in a porosity of the composite structure.
Abstract:
Apparatus to produce carbon nanotubes (CNTs) of arbitrary length using a chemical vapor deposition (CVD) process reactor furnace is described, where the CNTs are grown axially along a portion of the length of the furnace. The apparatus includes a spindle and a mechanism for rotating the spindle. The spindle located within a constant temperature region of the furnace and operable to collect the CNT around the rotating spindle as the CNT is grown within the furnace.
Abstract:
In an embodiment of the disclosure, there is provided a method to reduce porosity in a composite structure. The method adds an additive to a resin material to form an additive-resin mixture. The method combines the additive-resin mixture with reinforcement fibers to form a composite prepreg material, and in turn, a composite structure. The method heat cures the composite structure in a heating apparatus under a vacuum device at the resin cure temperature, heats the composite structure to an increased temperature above the additive phase transition temperature, and maintains the increased temperature for a time period sufficient. The method reduces the increased temperature back down to the resin cure temperature to allow the additive gas to undergo a phase transition to a condense phase, resulting in a substantially reduced vacuum pressure, resulting in a reduction in a porosity of the composite structure.
Abstract:
A fabricated substrate has at least one plurality of posts. The plurality is fabricated such that the two posts are located at a predetermined distance from one another. The substrate is exposed to a fluid matrix containing functionalized carbon nanotubes. The functionalized carbon nanotubes preferentially adhere to the plurality of posts rather than the remainder of the substrate. A connection between posts of the at least one plurality of posts is induced by adhering one end of the functionalized nanotube to one post and a second end of the functionalized carbon nanotube to a second post.
Abstract:
A structure is described that includes a plurality of columnar pieces of metamaterial, and a plurality of columnar pieces of non-metamaterial. The columnar pieces are arranged in an alternating pattern adjacent one another, and the metamaterial and the non-metamaterial are chosen such that indices of refraction for each are equal in magnitude, but opposite in sign, at a chosen wavelength, such that incident radiation is returned directly towards its source.