Abstract:
The present invention discloses a spectral measurement method via continuous light source and discrete light source, and a measurement instrument for non-invasive detection of human body tissue components. Said instrument includes an incident unit, a probe, a receiving unit and a data processing unit. Said composite spectral measurement method improves or strengthens the output light intensity at the wavelength that carries information of the target component within human body. It enables the spectral detection in the whole wavelength range, and thus significantly enhances the SNR of the detecting system. In the non-invasive detection instrument, light from both the continuous light source and discrete light source can be firstly selectively light-split by AOTF, or AOTF conducts light-splitting for the continuous light source, while the discrete light source LD is controlled by a spatial chopper. When data of the spectral curves achieved from said continuous light source and discrete light source are processed, data acquired under different measuring modes can be compared.
Abstract:
The optical measuring apparatus of this invention for measuring a physical amount of a specific component contained in a substance to be measured by the use of measurement light which passes through the substance to be measured and the use of predetermined reference light includes: a first interfering polarizing plate for obtaining a first light interference signal by interfering the measurement light; a second interfering polarizing plate for obtaining a second light interference signal by interfering the reference light; a first photoelectric converting section for converting the first light interference signal into a first electric signal; a second photoelectric converting section for converting the second light interference signal into a second electric signal; a first phase expanding section for expanding a phase of the first electric signal; a second phase expanding section for expanding a phase of the second electric signal; a phase difference measuring section for measuring a phase difference between a phase expanded by the first phase expanding section and a phase expanded by the second phase expanding section; and a physical amount determining section for determining the physical amount of the specific component contained in the substance to be measured depending on the phase difference measured by the phase difference measuring section.
Abstract:
This specification discloses a method and apparatus for noninvasive measurement of human body component, such as glucose, in vivo. The apparatus includes near infrared spectroscopy based laser sources driven at carrier frequency lying within the absorption line of the component. The apparatus also drive the laser diodes with a modulation frequency to generate frequency difference between the measuring light and reference beam, and the interference of the two beam results in a beat signal, which frequency is proportional to optical path difference between the measuring light and reference beam. We can detect the spectrum of the scattering light, which propagate at specifically single optical path, by select the frequency using a phase sensitive detector (PSD) circuit. The apparatus include several laser sources and its controllers which modulate the laser's radiation, and includes an optical fiber coupler and splitter to split the laser into measuring and reference beam, and includes PSD circuit to detect the signal by the frequency. The apparatus further includes a signal processor that applies a derivative spectroscopy technique, such as wavelength modulation spectroscopy, to determine the concentration of the component in the body.
Abstract:
An acousto-optic tunable filter 4 including: an acousto-optic crystal 41; an acoustic wave driver 42; and a piezoelectric transducer 43, is provided in front of a light source section 2 including a plurality of light sources 2A, 2B, . . . 2N having different wavelength characteristics. The frequency of RF generated by the acoustic wave driver 42 is varied in accordance with a desired wavelength. Thus, the light having the desired wavelength is incident on a converging lens 5 as plus and minus first-order light beams, and the light having wavelengths other than the desired wavelength is incident on a converging lens 5 as a zero-order light beam. The converging lens 5 converges the plus and minus first-order light beams and the zero-order light beams at positions different from each other. A selector 6 having openings located at the positions onto which the plus and first-order light beams are converged is provided in front of the converging lens 5. Therefore, only the light having the desired wavelength can pass through the selector 6 and is emitted from the light source apparatus 1.
Abstract:
In a non-collinear type acousto-optic tunable filter, a source light beam is made off-perpendicularly incident on a crystal body, so that the cross section of the source light beam is narrowed within the crystal body. As a result, the receiving angular aperture becomes large to increase the amount of light collected into the crystal body. Consequently, highly accurate spectrometry can be performed even if the intensity of the source light beam is low. Further, the non-diffraction part of the crystal body can be eliminated by the off-perpendicular incidence of the source light beam, so that the sufficient diffraction length of acoustic and optic waves can be obtained.
Abstract:
An apparatus and method for measuring component concentrations which enables accurate measurement of concentrations of component within an object in a non-destructive, non-invasive, and bloodless procedure. The apparatus comprises a light irradiator 1 for projecting pulse laser of different wavelengths toward an object 12 by means of a variable wavelength laser generating unit 11, a photodetector 2 for performing a time resolved measurement of the quantity of transmitted light from the object which is subject to changes with lapse of time after the generation of the pulse laser, and an arithmetic unit 3 for calculating concentrations of components in the object 12 and outputting the calculation result such that the relationship between time lapse and measured quantity of light is converted into a relationship between an optical path length representing the distance of light travel within the object 12 and a change in the measured quantity of light relative to a change in unit concentration so that the optical path length and the quantity of light which is measured when the change in the quantity of light is at a peak are stored in memory for each wavelength, the quantity of light being used as a basis for the calculation.
Abstract:
A dual side-hook structure is a hook unit with four hooks. The hook unit is latched on a horizontal, vertical or inclined rope or a long strip object without shifting to hang up an object without limitation in space. The hook unit includes positioning hooks on an upper end of the hook unit and hanging hooks on a lower end of the hook unit. A rope is enabled to pass through the positioning hooks or hanging hooks at two sides of the hook unit, and then the hook unit is secured on a fixed point on the rope without sliding freely. Edges of the positioning hooks and hanging hooks include abutting devices to prevent the rope from sliding out of the hook unit. The hook unit is positioned on a vertical rope by using the hanging hooks horizontally. The positioning hooks and the hanging hooks are used interchangeably. The entire hook unit is used very flexibly and versatilely without limitation in space, and is especially usable in a wild field, an outdoor area or a camping ground.
Abstract:
Disclosed is a sensor for measuring the amount of an analyte to be detected in human interstitial fluid, comprising a micro-cantilever sensing unit which includes: a first substrate; a micro-cantilever which is substantially in parallel with the first substrate and one end of which is supported onto the first substrate; a gold film formed onto at least one side of the micro-cantilever; a protein layer formed on the gold film, the protein layer being used to adsorb, at a surface thereof, the analyte to be detected in human interstitial fluid; a driving electrode provided on the first substrate; a micro-cantilever electrode which is provided on the first substrate at a position where the micro-cantilever is supported, and which is cooperated with the driving electrode so as to drive the micro-cantilever to produce resonance in a direction perpendicular to the first substrate; and a detecting electrode which is provided on the first substrate and which is cooperated with the micro-cantilever electrode so as to detect resonance frequency of the micro-cantilever. The present invention also relates to a fluid channel unit, a sensor system, and a method for measuring the amount of an analyte to be detected in human interstitial fluid.
Abstract:
In a non-collinear type acousto-optic tunable filter, the incident angle of a source light beam L.sub.1 radiated from a light source 6 onto an acoustic medium 1 is set at an equivalence incident angle for which the wavelength .lambda..sub.i of the diffracted ordinary ray L.sub.3 and the wavelength .lambda..sub.i ' of the diffracted extraordinary ray L.sub.4 become approximately identical. Further, the diffracted ordinary ray L.sub.3 and the diffracted extraordinary ray L.sub.4 of the approximately identical wavelength are superposed, and the intensity of the superposed ray is detected. Consequently, spectrometry is performed based on the superposed diffracted ray having twice the intensity and a very sharp waveform, so that accurate spectroscopy can be made possible even if the intensity of the source light beam is low.
Abstract:
A method and apparatus for noninvasive measurement of a human body component, such as glucose, in vivo, include near infrared spectroscopy based laser sources driven at a carrier frequency lying within the characteristic absorption of the component. The apparatus also drives the laser diodes with a modulation frequency to generate a frequency difference between the measuring light and reference beam, and the interference of the two beams results in a beat frequency signal, which frequency is proportional to the optical path difference between the measuring light and the reference beam. The scattering lights from human tissue with different optical lengths are simultaneously detected and selected based on the beat frequency. The method is a convenient embodiment of the floating reference principle, which takes advantage of optical length selection.