Abstract:
A strain measurement device includes a strain gauge, a holding device, a transverse strain recorder, and a data processing device. The strain gauge includes at least one first and at least one second layers of carbon nanotube films, each layer of carbon nanotube films having a plurality of carbon nanotubes. The carbon nanotubes in at least one first layer of carbon nanotube film align along a first direction. The carbon nanotubes in at least one second layer of carbon nanotube film align along a second direction. The holding device is used to fasten a specimen and the strain gauge. The transverse strain recorder is used to record a transverse strain of the strain gauge. The data processing device is used to calculate an axial strain of the strain gauge.
Abstract:
A gripper includes a support and a plurality of gripping arms fixed on the support. One of the plurality of gripping arms includes a base and a carbon nanotube film structure to define a conductive circuit. The conductive circuit receives current to heat the base and the carbon nanotube film structure to actuate the gripper for gripping an object.
Abstract:
A cleaning device includes a support and a cleaning arm partly embedded in the support. The cleaning arm includes a flexible polymer matrix and a carbon nanotube film structure at least partly embedded into the flexible polymer matrix. The carbon nanotube film structure includes a number of carbon nanotubes combined by van der Waals attractive force therebetween.
Abstract:
An electrical device includes a thermistor and at least two electrodes electrically connected to the thermistor and to which a source of electrical power is applied to cause current to flow through the thermistor. The thermistor may be a composite and includes a polymer material; and a plurality of conductive carbon nanotubes distributed in the polymer material. The electrical device employed with the thermistor performs not only PTC property, but also NTC property. Moreover, the method for fabricating the electrical device is also simple and easy to carry out because of the simple process.
Abstract:
An electrostrictive structure includes a flexible polymer matrix and a carbon nanotube film structure at least partly embedded into the flexible polymer matrix. The carbon nanotube film structure includes a number of carbon nanotubes combined by van der Waals attractive force therebetween. The carbon nanotube film structure extends in a curve in the flexible polymer matrix.
Abstract:
A Poisson's ratio material includes a carbon nanotube film structure. The carbon nanotube film structure includes a plurality of carbon nanotubes. A first part of the carbon nanotubes are aligned a first direction, a second part of the carbon nanotubes are aligned a second direction. The first direction is substantially perpendicular to second direction. When the Poisson's ratio material is stretched or compressed substantially along the first or second direction, a Poisson's ratio value is negative. When the Poisson's ratio material is stretched or compressed in a direction having an angle of about 45 degrees with the first direction, the Poisson's ratio value is positive.
Abstract:
A gripper includes a support and a plurality of gripping arms fixed on the support. One of the plurality of gripping arms includes a base and a carbon nanotube film structure to define a conductive circuit. The conductive circuit receives current to heat the base and the carbon nanotube film structure to actuate the gripper for gripping an object.
Abstract:
An electrostrictive composite includes a first material layer and a second material layer. The first material layer and the second material layer are stacked to each other. The thermal expansion coefficients of the first material layer and the second material layer are different. The first material layer includes a polymer matrix and a plurality of carbon nanotubes dispersed therein. Also an electrothermic type actuator using the electrostrictive composite is provided.
Abstract:
An electrostrictive structure includes a flexible polymer matrix and a carbon nanotube film structure at least partly embedded into the flexible polymer matrix. The carbon nanotube film structure includes a number of carbon nanotubes combined by van der Waals attractive force therebetween. The carbon nanotube film structure extends in a curve in the flexible polymer matrix.
Abstract:
A strain measurement device includes a strain gauge, a holding device, a transverse strain recorder, and a data processing device. The strain gauge includes at least one first and at least one second layers of carbon nanotube films, each layer of carbon nanotube films having a plurality of carbon nanotubes. The carbon nanotubes in at least one first layer of carbon nanotube film align along a first direction. The carbon nanotubes in at least one second layer of carbon nanotube film align along a second direction. The holding device is used to fasten a specimen and the strain gauge. The transverse strain recorder is used to record a transverse strain of the strain gauge. The data processing device is used to calculate an axial strain of the strain gauge.