Abstract:
An impurity introducing apparatus of the present invention includes: a system for introducing an impurity having charges into a target to be processed, the target being a semiconductor substrate or a film formed on the substrate; a system for supplying electrons into the target, the electrons canceling the charges of the impurity; and a system for controlling the maximum energy of the electrons supplied by the electron supply system at a predetermined value or less.
Abstract:
A terminal land frame includes a frame body and a plurality of lands. Each of these lands is formed out of the frame body to be connected to the frame body via a thinned portion and protrude therefrom. When the lands are pressed in a direction in which the lands protrude from the frame body, the thinned portions are fractured and the lands are easily separable from the frame body. A semiconductor chip is mounted on some of the lands of the terminal land frame, and the chip, wires and so on, are single-side-molded with a resin encapsulant. Thereafter, when the lands are pressed on the bottom, the lands are separated from the frame body. As a result, a structure, in which the lower part of each of these lands protrudes downward from the lower surface of the resin encapsulant, is obtained, and that protruding portion is used as an external electrode. In this manner, a downsized and thinned resin-molded semiconductor device is provided at a lower cost and with higher reliability.
Abstract:
A lower carbon film as a provisional film, a lower SiO2 film and an upper carbon film are formed, and then trenches having a wiring pattern are formed in the upper carbon film. Next, contact holes are formed through the lower carbon film and the lower SiO2 film. Then, wires and plugs are formed by filling in the trenches and contact holes with a barrier metal film and a Cu alloy film. After these process steps are repeatedly performed several times, a dummy opening is formed to extend downward through the uppermost SiO2 film. Thereafter, the carbon films are removed by performing ashing with oxygen introduced through the dummy opening. As a result, gas layers are formed to surround the wires and plugs. In this manner, a highly reliable gas-dielectric interconnect structure can be obtained by performing simple process steps.
Abstract:
A gate insulating film composed of silicon oxide and a floating gate electrode composed of polysilicon are formed sequentially on a P-type silicon substrate. A capacitance insulating film composed of silicon oxide and a control gate electrode composed of polysilicon are formed on the floating gate electrode. First spacer films, each composed of silicon oxide and formed over the respective side faces of individual components, and second spacer films, each composed of silicon nitride and formed on the respective first spacer films, are also provided. Even when a high-temperature heat treatment is performed in an oxidizing atmosphere, oxygen is prevented from being supplied to both end portions of the capacitance insulating film and the control gate electrode, which suppresses an increase in thickness of the capacitance insulating film at both end portions thereof.
Abstract:
A liquid precursor for forming a thin film of ferroelectric metal oxide in an integrated circuit contains metal oxides in excess of the stoichiometrically balanced amount. When the precursor comprises strontium, bismuth, tantalum and niobium for forming strontium bismuth tantalum niobate, the precursor contains excess amounts of at least one of tantalum and niobium. Capacitors containing thin films of layered superlattice material made from a precursor containing excess tantalum and niobium show good polarizability and low percentage imprint after 1010 negative polarization switching pulses at 75null C., and after 109 negative polarization switching pulses at 125null C.
Abstract:
A plurality of information memory cells and a single reference memory cell are coupled to a single word line. The reference memory cell stores reference information equivalent to a reference potential to information readout. Pieces of information, stored in the information memory cells, are fed, over respective bit lines, to first input terminals of sense amplifiers. The reference information, stored in the reference memory cell, is fed, over a bit line, to second input terminals of the sense amplifiers. When the potential of signal charges stored in the information memory cells falls due to leakage current, the potential of a signal charge stored in the reference memory cell correspondingly falls due to leakage current. This prolongs a length of time taken for a difference between these potentials to reach a sense limit, thereby achieving a longer data retention time. As a result of such arrangement, even when there occurs a small current leakage from memory cells, it is possible to secure a long data retention time thereby making it possible to obtain a long refresh cycle period.
Abstract:
To provide a method for evaluating chargeup damage caused in the practical fabrication process. Evaluation is carried out based on the electric current flowing between the source and the drain of a MOS transistor of a semiconductor element (1-1) having a wiring layer provided with an antenna effect by installing the semiconductor element (1-1) in the periphery of a practical device installed in a semiconductor substrate and measuring the electric current without attaching a probe to the gate of the semiconductor element (1-1).
Abstract:
The semiconductor device of the invention includes a capacitor device, which is formed on a substrate and which includes a capacitive lower electrode, a capacitive insulating film made of an insulating metal oxide film and a capacitive upper electrode. An interlevel insulating film having an opening reaching the capacitive upper electrode is formed over the capacitor device. A metal interconnection including a titanium film is formed over the interlevel insulating film so as to be electrically connected to the capacitive upper electrode through the opening. An anti-diffusion film having conductivity is formed between the capacitive upper electrode and the metal interconnection for preventing titanium atoms composing the titanium film of the metal interconnection from passing through the capacitive upper electrode and diffusing into the capacitive insulating film.
Abstract:
A resin sealed electronic device has an electronic element (30), a first external lead (10) with an element placement pad (11) having a thickness t of less than 0.1 mm, and a second external lead (20), which is disposed at a distance from the element placement pad (11), the first external lead (10) being bent into an S shape, the bending depth d thereof being made at least the thickness t of the first external lead (10), and the thickness T of the sealing resin on the non-element side of the element placement pad (11) being made smaller than the bending depth d. The electronic element (30), part of the first external lead (10), and part of the second external lead (20) are sealed by a sealing resin(40). This structure provides a compact electronic device, the vertical, horizontal, and height dimensions of which are all under 1 mm.
Abstract:
A cathode ray tube capable of reducing the shifting of apertures in the horizontal direction of the screen during the operation of the cathode ray tube, thereby preventing a color displacement, unevenness in colors, and reduction in luminance from occurring. By taking a center line of a shadow mask in a horizontal direction as an X-axis and a center line of the shadow mask in a vertical direction as a Y-axis, bridges in the vicinity of both ends of a perforated portion in the X-axis direction have a greater arrangement pitch in the vertical direction than that of bridges in the vicinity of a Y-axis. Accordingly, when a tension force is applied in the Y-axis direction to the shadow mask so that the shadow mask is stretched and held, a displacement of the aperture lines in the X-axis direction in the vicinity of both the ends of the shadow mask in the X-axis direction is suppressed to a small value, thereby reducing the shifting of the apertures in the X-axis direction during the operation of the cathode ray tube. This serves to prevent a color displacement, unevenness in colors, and reduction in luminance from occurring, and in addition, the occurrence of wrinkles in the shadow mask at the time when the shadow mask is stretched and held can be prevented.