Abstract:
A wireless LAN is comprised of a number of wired infrastructure devices, including at least one access point able to support a number of wireless communication devices configured to operate in the U-APSD mode. The wireless communications devices periodically contending for the wireless medium to transmit trigger messages to the access point and the access point responding by transmitting at least one frame of information. The wireless communications devices operate to synchronize the transmission of their trigger messages such that the possibility that the messages collide with one another is minimized.
Abstract:
An analyzer for analyzing a composition of a sample, and methods of operating an analyzer. The analyzer may include an optical illuminator and a Raman spectrometer to produce Raman spectral data representative of Raman radiation emitted from the sample in response to the illuminating light. Features to reduce background fluorescence are optionally provided. An x-ray illuminator may be provided to illuminate the sample with x-rays, and also an x-ray spectrometer may be present to produce x-ray spectral data representative of fluorescence radiation emitted from the sample in response to the illuminating x-rays. A processor receives the Raman spectral data and any x-ray spectral data and provides an analysis of a compound in the sample.
Abstract:
An optical emission spectroscopic system contains multiple distinct light paths that provide increased light to a spectrometer, thereby increasing sensitivity and signal-to-noise of the system.
Abstract:
A wireless LAN can be used to support audio communication sessions between wireless communication devices and wired communication devices both configured to operate according to the Internet Protocol. Both the wired and wireless communication devices generate and transmit frames of voice information over the LAN to each other and in the process of generating these frames they place a timestamp in each frame that is used by a receiving communications device to determine when the frame should be played in relationship to all of the other frames of voice information it receives. At times these communication devices can place incorrect timestamp values in the frames of audio information which can affect the quality of the communication experience for a user. I propose to correct any incorrect timestamp values by first recognizing that a timestamp value is incorrect and then rounding the value to the nearest frame boundary.
Abstract:
A wireless local area communications network that includes one or more access points each of which may have associated wireless communications devices in communication with it over a plurality of channels, some of which may be shared with a radar signal. The wireless communications devices are able to roam from one access point to another access point, in the presence of the channels shared with radar, in a seamless manner or in a manner in which the current communications session is not interrupted or delayed due to the requirement that any device in the network not transmit on those channels being shared with radar signals until the device can confirm that the channel is radar free. Furthermore, it is possible to guarantee that the communications session will not be disrupted during such roaming by configuring the wireless communications device to scan the wireless medium for only a minimum period of time necessary to detect a regularly occurring signal.
Abstract:
A wireless local area communications network that includes one or more access points each of which may have associated wireless communications devices in communication with it over a plurality of channels, some of which may be shared with a radar signal. The wireless communications devices are able to roam from one access point to another access point, in the presence of the channels shared with radar, in a seamless manner or in a manner in which the current communications session is not interrupted or delayed due to the requirement that any device in the network not transmit on those channels being shared with radar signals until the device can confirm that the channel is radar free. Furthermore, it is possible to guarantee that the communications session will not be disrupted during such roaming by configuring the wireless communications device to scan the wireless medium for only a minimum period of time necessary to detect a regularly occurring signal.
Abstract:
An optical emission spectroscopic (OES) instrument includes a spectrometer, a processor and an adjustable mask controlled by the processor. The adjustable mask defines a portion of an analytical gap imaged by the spectrometer. The instrument automatically adjusts the size and position of an opening in the mask, so the spectrometer images an optimal portion of plasma formed in the analytical gap, thereby improving signal and noise characteristics of the instrument, without requiring tedious and time-consuming manual adjustment of the mask during manufacture or use.
Abstract:
An analyzer for analyzing a composition of a sample, and methods of operating an analyzer. The analyzer may include an optical illuminator and a Raman spectrometer to produce Raman spectral data representative of Raman radiation emitted from the sample in response to the illuminating light. Features to reduce background fluorescence are optionally provided. An x-ray illuminator may be provided to illuminate the sample with x-rays, and also an x-ray spectrometer may be present to produce x-ray spectral data representative of fluorescence radiation emitted from the sample in response to the illuminating x-rays. A processor receives the Raman spectral data and any x-ray spectral data and provides an analysis of a compound in the sample.
Abstract:
An optical emission spectroscopic (OES) instrument includes a spectrometer, a processor and an adjustable mask controlled by the processor. The adjustable mask defines a portion of an analytical gap imaged by the spectrometer. The instrument automatically adjusts the size and position of an opening in the mask, so the spectrometer images an optimal portion of plasma formed in the analytical gap, thereby improving signal and noise characteristics of the instrument, without requiring tedious and time-consuming manual adjustment of the mask during manufacture or use.
Abstract:
An optical emission spectroscopic system contains multiple distinct light paths that provide increased light to a spectrometer, thereby increasing sensitivity and signal-to-noise of the system.