Abstract:
A pattern is inspected by acquiring a scanning electron microscope picture of an inspection pattern, and acquiring a scanning electron microscope secondary electron signal profile of the inspection pattern. A determination is made as to whether the inspection pattern is defective by comparing the scanning electron microscope picture of the inspection pattern to a scanning electron microscope picture of a sample pattern, and by comparing the scanning electron microscope secondary electron signal profile of the inspection pattern to a scanning electron microscope secondary electron signal profile of a sample pattern.
Abstract:
A pattern is inspected by acquiring a scanning electron microscope picture of an inspection pattern, and acquiring a scanning electron microscope secondary electron signal profile of the inspection pattern. A determination is made as to whether the inspection pattern is defective by comparing the scanning electron microscope picture of the inspection pattern to a scanning electron microscope picture of a sample pattern, and by comparing the scanning electron microscope secondary electron signal profile of the inspection pattern to a scanning electron microscope secondary electron signal profile of a sample pattern.
Abstract:
A pattern is inspected by acquiring a scanning electron microscope picture of an inspection pattern, and acquiring a scanning electron microscope secondary electron signal profile of the inspection pattern. A determination is made as to whether the inspection pattern is defective by comparing the scanning electron microscope picture of the inspection pattern to a scanning electron microscope picture of a sample pattern, and by comparing the scanning electron microscope secondary electron signal profile of the inspection pattern to a scanning electron microscope secondary electron signal profile of a sample pattern.
Abstract:
A pattern is inspected by acquiring a scanning electron microscope picture of an inspection pattern, and acquiring a scanning electron microscope secondary electron signal profile of the inspection pattern. A determination is made as to whether the inspection pattern is defective by comparing the scanning electron microscope picture of the inspection pattern to a scanning electron microscope picture of a sample pattern, and by comparing the scanning electron microscope secondary electron signal profile of the inspection pattern to a scanning electron microscope secondary electron signal profile of a sample pattern.
Abstract:
Embodiments of the present invention include methods for measuring a semiconductor wafer which has been subjected to an etching process. Light is radiated at the semiconductor wafer. Light within a selected wavelength band reflected from the semiconductor wafer is measured to provide an output value. A ratio of the output value and a reference value is determined. The reference value may be based on light within the selected wavelength band reflected from a reference surface, such as a bare silicon reference surface. It is determined that the semiconductor wafer is under-etched if the determined ratio does not meet the reference value. A normalized optical impedance or a polarization ratio may be measured based on light within a selected wave length band reflected from the semiconductor wafer to provide the output value in various embodiments of the present invention. In further aspects of the present invention, a thickness of a remaining oxide layer is determined using an under-etch recipe when it is determined that a semiconductor wafer is under-etched and a thickness of a damaged/polymer layer may be determined using an over-etch recipe when it is determined that the semiconductor wafer is over-etched.
Abstract:
A pattern is inspected by acquiring a scanning electron microscope picture of an inspection pattern, and acquiring a scanning electron microscope secondary electron signal profile of the inspection pattern. A determination is made as to whether the inspection pattern is defective by comparing the scanning electron microscope picture of the inspection pattern to a scanning electron microscope picture of a sample pattern, and by comparing the scanning electron microscope secondary electron signal profile of the inspection pattern to a scanning electron microscope secondary electron signal profile of a sample pattern.
Abstract:
A pattern is inspected by acquiring a scanning electron microscope picture of an inspection pattern, and acquiring a scanning electron microscope secondary electron signal profile of the inspection pattern. A determination is made as to whether the inspection pattern is defective by comparing the scanning electron microscope picture of the inspection pattern to a scanning electron microscope picture of a sample pattern, and by comparing the scanning electron microscope secondary electron signal profile of the inspection pattern to a scanning electron microscope secondary electron signal profile of a sample pattern.