Abstract:
The present invention provides a pulse train generator comprising: a dual-frequency signal light source for generating a dual-frequency signal; a soliton shaper for soliton-shaping output light from the dual-frequency signal light source; and an adiabatic soliton compressor for performing adiabatic soliton compression on output light from the soliton shaper, and also provides a waveform shaper used in this pulse train generator, including a plurality of highly nonlinear optical transmission lines and a plurality of low-nonlinearity optical transmission lines which has a nonlinearity coefficient lower than that of the plurality of highly nonlinear optical transmission lines and which has a second-order dispersion value of which an absolute value is different from that of the plurality of highly nonlinear optical transmission lines. Further, the present invention provides a light source comprising a plurality of continuous light sources of which at least one oscillates in a multimode; a multiplexer for multiplexing output light from the continuous light sources; and a nonlinear phenomenon producer for producing a nonlinear phenomenon on output light from the multiplexer so as to suppress SBS (Stimulated Brillouin Scattering).
Abstract:
A multi-frequency light producing method and apparatus multiplies the number of optical channels present in an incident wavelength division multiplexed (WDM) signal light source by four-wave mixing (FWM) the WDM signal with at least one pump lightwave at least one time. By FWM the WDM light and a pump lightwave multiple times, wherein each FWM process is executed with a pump lightwave having a different frequency, either in series or parallel, the number of optical channels produced as a result of FWM effectively increases the number of optical channels present in addition to those from the WDM signal. The light producing method and apparatus can be employed in a telecommunications system as a an inexpensive light source producing a plurality of optical frequencies.
Abstract:
A method of simultaneously specifying the wavelength dispersion and nonlinear coefficient of an optical fiber. Pulsed probe light and pulsed pump light are first caused to enter an optical fiber to be measured. Then, the power oscillation of the back-scattered light of the probe light or idler light generated within the optical fiber is measured. Next, the instantaneous frequency of the measured power oscillation is obtained, and the dependency of the instantaneous frequency relative to the power oscillation of the pump light in a longitudinal direction of the optical fiber is obtained. Thereafter, a rate of change in the longitudinal direction between phase-mismatching conditions and nonlinear coefficient of the optical fiber is obtained from the dependency of the instantaneous frequency. And based on the rate of change, the longitudinal wavelength-dispersion distribution and longitudinal nonlinear-coefficient distribution of the optical fiber are simultaneously specified.
Abstract:
The present invention provides a pulse train generator comprising: a dual-frequency signal light source for generating a dual-frequency signal; a soliton shaper for soliton-shaping output light from the dual-frequency signal light source; and an adiabatic soliton compressor for performing adiabatic soliton compression on output light from the soliton shaper, and also provides a waveform shaper used in this pulse train generator, including a plurality of highly nonlinear optical transmission lines and a plurality of low-nonlinearity optical transmission lines which has a nonlinearity coefficient lower than that of the plurality of highly nonlinear optical transmission lines and which has a second-order dispersion value of which an absolute value is different from that of the plurality of highly nonlinear optical transmission lines. Further, the present invention provides a light source comprising a plurality of continuous light sources of which at least one oscillates in a multimode; a multiplexer for multiplexing output light from the continuous light sources; and a nonlinear phenomenon producer for producing a nonlinear phenomenon on output light from the multiplexer so as to suppress SBS (Stimulated Brillouin Scattering).
Abstract:
A wavelength converting method and apparatus which converts wavelength division multiplexed (WDM) signal light, having a plurality of channels, by four-wave mixing the WDM signal light with at least one pump lightwave. Wavelength conversion of the WDM signal is accomplished without producing noise by FWM the WDM signal with a pump lightwave, wherein the pump lightwave frequency is separated from the WDM signal by an interval equal to or greater than the bandwidth of the WDM signal. Two pump lightwaves can be used instead of one, wherein one of the pump lightwaves has a frequency on one side of the bandwidth of the WDM signal, and the average frequency of the two pump lightwaves is on the other side of the WDM signal bandwidth.
Abstract:
The present invention provides a method for generating four-wave mixing to obtain idler light with high efficiency, in which the range of lengths of an optical fiber is appropriately set, and probe light and pumping light, having different frequencies, are launched into the optical fiber. When the nonlinear coefficient of the optical fiber, the loss per unit distance, and the wavelength and intensity of the probe light and pumping light are set to certain values, the idler light conversion efficiency at the output end of the optical fiber is a periodic function with respect to optical fiber length having a maximal value and a minimal value. The maximum length of the optical fiber to be used to obtain four-wave mixing is set to be equal to or less than the length Lmax (Lmax=Lm+&Dgr;L) which is given by adding the length of the optical fiber Lm, at which the idler light conversion efficiency takes on the first maximal value in the aforementioned periodic function and distance &Dgr;L or 10% of Lm.
Abstract:
In an optical gain equalizer according to the present invention, a plurality of etalon filters 1 and one ore more fiber gratings 2 or dielectric multilayer filters 3 are arranged in line, and a beam of light externally applied is passed through the etalon filters 1 and the fiber gratings 2 or dielectric multilayer filters 3 and outputted to the outside, and the etalon filters 1 have sinusoidal wave loss characteristic of the same amplitude and period as those of the term obtained by Fourier series expansion of the loss wavelength characteristic for gain flattening, and the one or more fiber gratings 2 or dielectric multilayer filters 3 compensate the ripple component remaining as the difference between the loss wavelength characteristic for gain flattening and the loss wavelength characteristic owing to the etalon filters 1. An optical amplifying device 14 is constituted by combining an optical amplifier 5 with the optical gain equalizer 4. A wavelength-division multiplex transmitter is constituted by using the optical amplifying device 14.
Abstract:
A method of simultaneously specifying the wavelength dispersion and nonlinear coefficient of an optical fiber. Pulsed probe light and pulsed pump light are first caused to enter an optical fiber to be measured. Then, the power oscillation of the back-scattered light of the probe light or idler light generated within the optical fiber is measured. Next, the instantaneous frequency of the measured power oscillation is obtained, and the dependency of the instantaneous frequency relative to the power oscillation of the pump light in a longitudinal direction of the optical fiber is obtained. Thereafter, a rate of change in the longitudinal direction between phase-mismatching conditions and nonlinear coefficient of the optical fiber is obtained from the dependency of the instantaneous frequency. And based on the rate of change, the longitudinal wavelength-dispersion distribution and longitudinal nonlinear-coefficient distribution of the optical fiber are simultaneously specified.
Abstract:
A method of simultaneously specifying the wavelength dispersion and nonlinear coefficient of an optical fiber. Pulsed probe light and pulsed pump light are first caused to enter an optical fiber to be measured. Then, the power oscillation of the back-scattered light of the probe light or idler light generated within the optical fiber is measured. Next, the instantaneous frequency of the measured power oscillation is obtained, and the dependency of the instantaneous frequency relative to the power oscillation of the pump light in a longitudinal direction of the optical fiber is obtained. Thereafter, a rate of change in the longitudinal direction between phase-mismatching conditions and nonlinear coefficient of the optical fiber is obtained from the dependency of the instantaneous frequency. And based on the rate of change, the longitudinal wavelength-dispersion distribution and longitudinal nonlinear-coefficient distribution of thee optical fiber are simultaneously specified.
Abstract:
A method to obtain polarization characteristics of an optical transmission medium is disclosed. Sequentially plural different states of polarized light are launched into the optical transmission medium. Intensities of light emerging from the optical transmission medium through combinations of optical elements are measured to obtain Stokes parameters from which Stokes vectors describing the emerging light corresponding to each of the plural sequentially launched states of polarization are obtained; for at least three different launched states of polarization, descriptors are used of these launched states of polarization and the Stokes vectors describing the corresponding emerging light to calculate a Jones matrix which mathematically models the changes that the launched light when described in terms of a Jones vector is subject to when passing through the optical transmission medium; and, the Jones matrix is used to describe the polarization characteristics of the optical transmission medium.