Abstract:
Embodiments of the invention are based on the fermentation of bacteria to produce nano-cellulose in oxygen permeable tubular bioreactors. The resulting hydrogel non-hollow fiber can be stretched and dewatered to form strong, stiff yet flexible fiber. The fiber can be dehydrated by freeze drying or solvent exchange to form macroporous material and then optionally soaked with a solution of growth factors, anti-inflammatory drugs, and/or anitibacterial agents to provide a slow release drug delivery device in fiber form. The surface of the fiber is composed of nano-structured cellulose which promotes cell migration, tissue integration, and the healing process. BC fibers are not degraded in the human body and thus are well suited as reinforcement of implants and growing tissue. Uses for the BC fibers include surgical sutures, and reinforcing and promoting regeneration of damaged tissue or implants.
Abstract:
Implantable materials for medical or surgical applications comprising specific chemical groups on their surface to alter the physico-chemical properties of said material rendering it suitable implantation or biocompatible properties.
Abstract:
A film forming composition and a polymeric film or coating comprising hemicellulose and at least one component selected from the group consisting of plasticizers, cellulose, and an oligomer or polymer, is disclosed, said polymeric film or coating further comprising at least one additive/reactant increasing the liquid/moisture resistance and mixed with and/or reacting with the hemicellulose and said at least one component before or in conjunction with the forming of the film or coating. The use of said film or coating is also disclosed. Further, a method for the manufacture of said polymeric film or coating is disclosed, as well as a method for improving the liquid/moisture resistance of hemicellulose. Said at least one additive/reactant increasing the liquid/moisture resistance is either a cross-linking agent or a hydrophobizing agent. In another preferred embodiment the additive is a 2:1 layered phyllosilicate. The additive forms a nanocomposite with the hemicellulose as a matrix. The hemicellulose/phyllosilicate nanocomposite reinforced material provides excellent liquid/moisture resistance. Heat treatment of all of the films increases their liquid/moisture resistance and reduces their oxygen permeability.
Abstract:
A film-forming composition and a polymeric film or coating comprising hemicellulose, having a molecular weight of less than 50 000 g/mol, and at least one component selected from the group consisting of plasticizers, cellulose and a synthetic oligomer or polymer is disclosed. The use of said film or coating as an oxygen barrier is also disclosed. Further, a method for the manufacture of said polymeric film or coating is disclosed, as well as a method for improving the film-forming properties of hemicellulose having a molecular weight of less than 50 000 g/mol.
Abstract:
The present invention relates to preparation and use of nanocellulose fibrils or crystals such as disintegrated bacterial nanocellulose, tunicate-derived nanocellulose, or plant-derived nanocellulose, together with carbon nanotubes, as a biocompatible and conductive ink for 3D printing of electrically conductive patterns. Biocompatible conductive bioinks described in this invention were printed in the form of connected lines onto wet or dried nanocellulose films, bacterial cellulose membrane, or tunicate decellularized tissue. The devices were biocompatible and showed excellent mechanical properties and good electrical conductivity through printed lines (3.8·10−1 S cm−1). Such scaffolds were used to culture neural cells. Neural cells attached selectively on the printed pattern and formed connective networks. The devices prepared by this invention are suited as bioassays to screen drugs against neurodegenerative diseases such as Alzheimer's and Parkinson's, study brain function, and/or be used to link the human brain with electronic and/or communication devices. They can also be implanted to replace neural tissue or stimulate guiding of neural cells. They can also be used to stimulate the heart by using electrical signaling or to repair myocardial infarction and/or damage related thereto.
Abstract:
A film forming composition and a polymeric film or coating comprising hemicellulose and at least one component selected from the group consisting of plasticizers, cellulose, and an oligomer or polymer, is disclosed, said polymeric film or coating further comprising at least one additive/reactant increasing the liquid/moisture resistance and mixed with and/or reacting with the hemicellulose and said at least one component before or in conjunction with the forming of the film or coating. The use of said film or coating is also disclosed. Further, a method for the manufacture of said polymeric film or coating is disclosed, as well as a method for improving the liquid/moisture resistance of hemicellulose. Said at least one additive/reactant increasing the liquid/moisture resistance is either a cross-linking agent or a hydrophobizing agent. In another preferred embodiment the additive is a 2:1 layered phyllosilicate. The additive forms a nanocomposite with the hemicellulose as a matrix. The hemicellulose/phyllosilicate nanocomposite reinforced material provides excellent liquid/moisture resistance. Heat treatment of all of the films increases their liquid/moisture resistance and reduces their oxygen permeability.
Abstract:
A film-forming composition and a polymeric film or coating comprising hemicellulose, having a molecular weight of less than 50 000 g/mol, and at least one component selected from the group consisting of plasticizers, cellulose and a synthetic oligomer or polymer is disclosed. The use of said film or coating as an oxygen barrier is also disclosed. Further, a method for the manufacture of said polymeric film or coating is disclosed, as well as a method for improving the film-forming properties of hemicellulose having a molecular weight of less than 50 000 g/mol.
Abstract:
Clean chamber technology for 3D printers and bioprinters is described. An airtight chamber or enclosure is provided so that positive pressure can be created inside the chamber. Unfiltered air is sucked in from outside into the chamber through a high efficiency filter such as a HEPA filter, using an electrically powered fan or blower, filtering out at least about 99% of particles and contaminants. The filtered air is then pushed into a 3D printing area inside the chamber and out through vents within the frame of the chamber. The technology provides a clean environment for 3D bioprinting of human tissue models and organs and 3D cell culturing without requiring clean room facilities.
Abstract:
The present invention relates to preparation and use of nanocellulose fibrils or crystals such as disintegrated bacterial nanocellulose, tunicate-derived nanocellulose, or plant-derived nanocellulose, together with carbon nanotubes, as a biocompatible and conductive ink for 3D printing of electrically conductive patterns. Biocompatible conductive bioinks described in this invention were printed in the form of connected lines onto wet or dried nanocellulose films, bacterial cellulose membrane, or tunicate decellularized tissue. The devices were biocompatible and showed excellent mechanical properties and good electrical conductivity through printed lines (3.8·10−1 S cm−1). Such scaffolds were used to culture neural cells. Neural cells attached selectively on the printed pattern and formed connective networks. The devices prepared by this invention are suited as bioassays to screen drugs against neurodegenerative diseases such as Alzheimer's and Parkinson's, study brain function, and/or be used to link the human brain with electronic and/or communication devices. They can also be implanted to replace neural tissue or stimulate guiding of neural cells. They can also be used to stimulate the heart by using electrical signaling or to repair myocardial infarction and/or damage related thereto.
Abstract:
A film forming composition and a polymeric film or coating comprising hemicellulose is disclosed, said polymeric film or coating further comprising at least one additive/reactant increasing the liquid/moisture resistance. The use of said film or coating is also disclosed. Further, a method for the manufacture of said polymeric film or coating is disclosed, as well as a method for improving the liquid/moisture resistance of hemicellulose. The hemicellulose/phyllosilicate nanocomposite reinforced material provides excellent liquid/moisture resistance.