Abstract:
The present invention discloses a touch sensing circuit for capacitive touch panel formed on a substrate comprises a transparent conductive layer having a thickness of 100 Å-500 Å; a conductive layer having a thickness of 1000 Å-5000 Å; and an insulating layer having a thickness of 1 μm-5 μm disposed between the transparent conductive layer and the conductive layer.
Abstract:
The present disclosure relates to a touch panel, and more particularly, to a kind of touch panel which actualizes various touch response functions on a same surface and a fabrication method thereof. The touch panel includes an upper cover substrate, a first electrode array, a patterned mask layer, and at least a second electrode array. The upper cover substrate includes a display area and a peripheral area surrounding the display area. The first electrode array is disposed corresponding to the display area. The patterned mask layer is disposed corresponding to the peripheral area. At least a second electrode array is disposed corresponding to a first patterned area of the patterned mask layer. A fabricating method for the touch panel is also provided.
Abstract:
The present invention discloses a capacitive touch panel, comprises a touch sensing pattern form on a substrate, which could generate a sensing signals in response to a touch on the capacitive touch panel; a plurality of first signal lines and a second signal line for conducting the sensing signals; the touch sensing pattern comprises a plurality of first conductive assemblies arranged in a first direction, a first end of each first conductive assembly respectively connects to a corresponding first signal line; the second signal line connects the second ends of all of the first conductive assemblies together.
Abstract:
An embodiment discloses a lighting device, comprising a lamp holder, a lamp panel, a lamp base, wherein the lamp panel includes a light source and located in the lamp holder, the lamp holder is connected to the lamp base, a physical displacement control module, and a power supply driver module placed in the lamp base, wherein the physical displacement control module is connected to the power supply driver module, adapted to control the power supply driver module to change an output signal to the lamp panel according to detected physical displacement, and the power supply driver module affords power supply to the physical displacement control module.
Abstract:
The present disclosure relates to a touch technology, especially to a touch device and a manufacturing method thereof. The touch device comprises a sensing electrode structure, a shielding layer, a plurality of peripheral connection wires and a grounding wire. The shielding layer surrounds the periphery of the sensing electrode structure. The plurality of peripheral connection wires are located under the shielding layer and electrically connected to the sensing electrode structure. The grounding wire is electrically connected to the shielding layer. Thus, in accordance with the present disclosure, the touch device can shield external interference, and the reliability for operation of the touch circuit can be improved.
Abstract:
An embodiment discloses a lighting device, comprising a lamp holder, a lamp panel, a lamp base, wherein the lamp panel includes a light source and located in the lamp holder, the lamp holder is connected to the lamp base, a physical displacement control module, and a power supply driver module placed in the lamp base, wherein the physical displacement control module is connected to the power supply driver module, adapted to control the power supply driver module to change an output signal to the lamp panel according to detected physical displacement, and the power supply driver module affords power supply to the physical displacement control module.
Abstract:
The present disclosure relates to a touch panel, and more particularly, to a kind of touch panel which actualizes various touch response functions on a same surface and a fabrication method thereof. The touch panel includes an upper cover substrate, a first electrode array, a patterned mask layer, and at least a second electrode array. The upper cover substrate includes a display area and a peripheral area surrounding the display area. The first electrode array is disposed corresponding to the display area. The patterned mask layer is disposed corresponding to the peripheral area. At least a second electrode array is disposed corresponding to a first patterned area of the patterned mask layer. A fabricating method for the touch panel is also provided.
Abstract:
A touch display having a laminated structure is provided in present disclosure. The touch display comprises a touch panel, a display module, and a step-shaped gasket element. The display module has a step-shaped structure formed due to a height difference, wherein the step-shaped structure is located in an edge area of the display module. The gasket element inosculates with the step-shaped structure of the display module to fill the height difference in the edge area of the display module. In accordance with present disclosure, the gasket element is not in a suspended state usually caused when the gasket element is not being supported by display module and is effectively laminated to an outer frame of display module, thereby enhancing the reliability of lamination of touch panel and display module. Moreover, a laminated structure and a laminating method for touch display having, the laminated structure are provided in present disclosure.
Abstract:
The present disclosure relates to a display device, and more particularly to a reflective touch display and a fabrication method thereof The reflective touch display comprises a reflective display device, a first bonding layer, a light guiding plate, a second bonding layer, and a touch screen. The light guiding plate is laminated to top surface of the reflective display through the first bonding layer. The touch screen is laminated to top surface of the light guiding plate through the second bonding layer. The first bonding layer and the second bonding layer are formed by a liquid bonding material that transforms from a liquid state to a solid state, wherein refraction index of each of the first and second bonding layer is less than that of the light guiding plate. In accordance with the present disclosure, yield rate can be increased and production cost can be reduced.
Abstract:
The present disclosure provides a touch sensing device and a method for fabricating the same. The touch sensing device comprises a touch panel and a flexible printed circuit board, wherein the touch panel comprises a first bonding mark and the flexible printed circuit board has a bonding surface bonded to the touch panel and has a non-bonding surface. The flexible printed circuit board comprises a second bonding mark disposed on the non-bonding surface. The second bonding mark and the first bonding mark have a relationship of contraposition.