Silicon substrates with doped surface contacts formed from doped silicon inks and corresponding processes
    1.
    发明授权
    Silicon substrates with doped surface contacts formed from doped silicon inks and corresponding processes 有权
    具有由掺杂硅油墨形成的掺杂表面接触的硅衬底和相应的工艺

    公开(公告)号:US08912083B2

    公开(公告)日:2014-12-16

    申请号:US13113287

    申请日:2011-05-23

    Abstract: The use of doped silicon nanoparticle inks and other liquid dopant sources can provide suitable dopant sources for driving dopant elements into a crystalline silicon substrate using a thermal process if a suitable cap is provided. Suitable caps include, for example, a capping slab, a cover that may or may not rest on the surface of the substrate and a cover layer. Desirable dopant profiled can be achieved. The doped nanoparticles can be delivered using a silicon ink. The residual silicon ink can be removed after the dopant drive-in or at least partially densified into a silicon material that is incorporated into the product device. The silicon doping is suitable for the introduction of dopants into crystalline silicon for the formation of solar cells.

    Abstract translation: 使用掺杂的硅纳米颗粒油墨和其它液体掺杂剂源可以提供合适的掺杂剂源,以便如果提供合适的盖,则使用热处理将掺杂剂元素驱动到晶体硅衬底中。 合适的帽包括例如盖板,可以或可以不搁置在基材表​​面上的盖和覆盖层。 可以实现期望的掺杂剂。 可以使用硅油墨递送掺杂的纳米颗粒。 在掺杂剂驱入或至少部分致密化成掺入产品装置的硅材料之后,可以除去残留的硅油墨。 硅掺杂适用于将掺杂剂引入结晶硅以形成太阳能电池。

    SILICON/GERMANIUM NANOPARTICLE INKS AND METHODS OF FORMING INKS WITH DESIRED PRINTING PROPERTIES
    3.
    发明申请
    SILICON/GERMANIUM NANOPARTICLE INKS AND METHODS OF FORMING INKS WITH DESIRED PRINTING PROPERTIES 审中-公开
    硅/锗纳米油墨和形成具有所需印刷性能的墨水的方法

    公开(公告)号:US20130189831A1

    公开(公告)日:2013-07-25

    申请号:US13353645

    申请日:2012-01-19

    Abstract: Improved silicon/germanium nanoparticle inks are described that have silicon/germanium nanoparticles well distributed within a stable dispersion. In particular the inks are formulated with a centrifugation step to remove contaminants as well as less well dispersed portions of the dispersion. A sonication step can be used after the centrifugation, which is observed to result in a synergistic improvement to the quality of some of the inks. The silicon/germanium ink properties can be engineered for particular deposition applications, such as spin coating or screen printing. Appropriate processing methods are described to provide flexibility for ink designs without surface modifying the silicon/germanium nanoparticles. The silicon/germanium nanoparticles are well suited for forming semiconductor components, such as components for thin film transistors or solar cell contacts.

    Abstract translation: 描述了改进的硅/锗纳米颗粒油墨,其具有良好分布在稳定分散体内的硅/锗纳米颗粒。 特别地,油墨通过离心步骤配制以除去分散体中的污染物以及较不良好分散的部分。 在离心之后可以使用超声处理步骤,这被观察到导致对一些油墨的质量的协同改进。 可以为特定的沉积应用(例如旋涂或丝网印刷)设计硅/锗油墨性质。 描述适当的处理方法以提供油墨设计的灵活性,而不对硅/锗纳米颗粒进行表面改性。 硅/锗纳米颗粒非常适合于形成诸如用于薄膜晶体管或太阳能电池触点的部件的半导体部件。

    Composites of polysiloxane polymers and inorganic nanoparticles
    4.
    发明授权
    Composites of polysiloxane polymers and inorganic nanoparticles 有权
    聚硅氧烷聚合物和无机纳米粒子的复合材料

    公开(公告)号:US08404771B2

    公开(公告)日:2013-03-26

    申请号:US13559085

    申请日:2012-07-26

    CPC classification number: C08L83/04 C08K3/02 C08K3/22 C08K3/36 C08K5/05

    Abstract: Desirable composites of polysiloxane polymers and inorganic nanoparticles can be formed based on the appropriate selection of the surface properties of the particles and the chemical properties of the polymer. High loadings of particles can be achieved with good dispersion through the polymer. The composites can have good optical properties. In some embodiments, the inorganic particles are substantially free of surface modification.

    Abstract translation: 聚硅氧烷聚合物和无机纳米颗粒的理想复合材料可以基于颗粒的表面性质和聚合物的化学性质的适当选择而形成。 可以通过聚合物的良好分散实现高负载量的颗粒。 复合材料可以具有良好的光学性能。 在一些实施方案中,无机颗粒基本上没有表面改性。

    COMPOSITES OF POLYSILOXANE POLYMERS AND INORGANIC NANOPARTICLES
    5.
    发明申请
    COMPOSITES OF POLYSILOXANE POLYMERS AND INORGANIC NANOPARTICLES 有权
    聚硅氧烷聚合物和无机纳米颗粒的复合材料

    公开(公告)号:US20120289637A1

    公开(公告)日:2012-11-15

    申请号:US13559085

    申请日:2012-07-26

    CPC classification number: C08L83/04 C08K3/02 C08K3/22 C08K3/36 C08K5/05

    Abstract: Desirable composites of polysiloxane polymers and inorganic nanoparticles can be formed based on the appropriate selection of the surface properties of the particles and the chemical properties of the polymer. High loadings of particles can be achieved with good dispersion through the polymer. The composites can have good optical properties. In some embodiments, the inorganic particles are substantially free of surface modification.

    Abstract translation: 聚硅氧烷聚合物和无机纳米颗粒的理想复合材料可以基于颗粒的表面性质和聚合物的化学性质的适当选择而形成。 可以通过聚合物的良好分散实现高负载量的颗粒。 复合材料可以具有良好的光学性能。 在一些实施方案中,无机颗粒基本上没有表面改性。

    Functional composites, functional inks and applications thereof
    8.
    发明授权
    Functional composites, functional inks and applications thereof 有权
    功能复合材料,功能油墨及其应用

    公开(公告)号:US08119233B2

    公开(公告)日:2012-02-21

    申请号:US12070063

    申请日:2008-02-14

    Abstract: Functional composite materials comprise elemental inorganic particles within an organic matrix. The elemental inorganic materials generally comprise elemental metal, elemental metalloid, alloys thereof, or mixtures thereof. In alternative or additional embodiments, the inorganic particles can comprise a metal oxide, a metalloid oxide, a combination thereof or a mixture thereof. The inorganic particles can have an average primary particle size of no more than abut 250 nm and a secondary particle size in a dispersion when blended with the organic matrix of no more than about 2 microns. The particles can be substantially unagglomerated within the composite. The organic binder can be a functional polymer such as a semiconducting polymer. The inorganic particles can be surface modified, such as with a moiety having an aromatic functional group for desirable interactions with a semiconducting polymer. Appropriate solution based methods can be used for forming the composite from dispersions of the particles. The composites can be processed into products, such as printed electronics devices.

    Abstract translation: 功能复合材料包括有机基质内的元素无机颗粒。 元素无机材料通常包含元素金属,元素准金属,其合金或其混合物。 在替代或另外的实施方案中,无机颗粒可以包含金属氧化物,类金属氧化物,其组合或其混合物。 当与有机基质共混不超过约2微米时,无机颗粒的平均一次粒径不超过250nm,分散体中的二次粒径。 颗粒可以在复合材料内基本上未聚集。 有机粘合剂可以是功能聚合物,例如半导体聚合物。 无机颗粒可以被表面改性,例如具有芳族官能团的部分用于与半导体聚合物的期望相互作用。 基于溶液的方法可用于从颗粒的分散体形成复合物。 复合材料可以加工成产品,如印刷电子设备。

    PHOTOVOLTAIC STRUCTURES PRODUCED WITH SILICON RIBBONS
    9.
    发明申请
    PHOTOVOLTAIC STRUCTURES PRODUCED WITH SILICON RIBBONS 审中-公开
    用硅胶生产的光伏结构

    公开(公告)号:US20110256377A1

    公开(公告)日:2011-10-20

    申请号:US12948019

    申请日:2010-11-17

    Abstract: Photovoltaic elements can be formed by in-motion processing of a silicon ribbon. In some embodiments, only a single surface of a silicon ribbon is processed in-motion. In other embodiments both surfaces of a silicon ribbon is processed in-motion. In-motion processing can include, but is not limited to, formation of patterned or uniform doped regions within or along the silicon ribbon as well as the formation of patterned or uniform dielectric layers and/or electrically conductive elements on the silicon ribbon. After performing in-motion processing, additional processing steps can be performed after the ribbon is cut into portions. Furthermore, post-cut processing can include, but is not limited to, the formation of solar cells, photovoltaic modules, and solar panels.

    Abstract translation: 可以通过硅带的运动内处理来形成光伏元件。 在一些实施例中,只有硅带的单个表面被运动地处理。 在其它实施例中,硅带的两个表面被运动地处理。 运动内处理可以包括但不限于在硅带内或沿着硅带形成图案化或均匀的掺杂区,以及在硅带上形成图案化或均匀的电介质层和/或导电元件。 在执行运动处理之后,可以在色带被切割成部分之后执行附加的处理步骤。 此外,后切割处理可以包括但不限于形成太阳能电池,光伏模块和太阳能电池板。

Patent Agency Ranking