Abstract:
The use of doped silicon nanoparticle inks and other liquid dopant sources can provide suitable dopant sources for driving dopant elements into a crystalline silicon substrate using a thermal process if a suitable cap is provided. Suitable caps include, for example, a capping slab, a cover that may or may not rest on the surface of the substrate and a cover layer. Desirable dopant profiled can be achieved. The doped nanoparticles can be delivered using a silicon ink. The residual silicon ink can be removed after the dopant drive-in or at least partially densified into a silicon material that is incorporated into the product device. The silicon doping is suitable for the introduction of dopants into crystalline silicon for the formation of solar cells.
Abstract:
Methods are described that have the capability of producing submicron/nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and/or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron/nanoscale particles.
Abstract:
Improved silicon/germanium nanoparticle inks are described that have silicon/germanium nanoparticles well distributed within a stable dispersion. In particular the inks are formulated with a centrifugation step to remove contaminants as well as less well dispersed portions of the dispersion. A sonication step can be used after the centrifugation, which is observed to result in a synergistic improvement to the quality of some of the inks. The silicon/germanium ink properties can be engineered for particular deposition applications, such as spin coating or screen printing. Appropriate processing methods are described to provide flexibility for ink designs without surface modifying the silicon/germanium nanoparticles. The silicon/germanium nanoparticles are well suited for forming semiconductor components, such as components for thin film transistors or solar cell contacts.
Abstract:
Desirable composites of polysiloxane polymers and inorganic nanoparticles can be formed based on the appropriate selection of the surface properties of the particles and the chemical properties of the polymer. High loadings of particles can be achieved with good dispersion through the polymer. The composites can have good optical properties. In some embodiments, the inorganic particles are substantially free of surface modification.
Abstract:
Desirable composites of polysiloxane polymers and inorganic nanoparticles can be formed based on the appropriate selection of the surface properties of the particles and the chemical properties of the polymer. High loadings of particles can be achieved with good dispersion through the polymer. The composites can have good optical properties. In some embodiments, the inorganic particles are substantially free of surface modification.
Abstract:
Methods are described that have the capability of producing submicron/nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and/or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron/nanoscale particles.
Abstract:
Highly uniform silica nanoparticles can be formed into stable dispersions with a desirable small secondary particle size. The silica particles can be surface modified to form the dispersions. The silica nanoparticles can be doped to change the particle properties and/or to provide dopant for subsequent transfer to other materials. The dispersions can be printed as an ink for appropriate applications. The dispersions can be used to selectively dope semiconductor materials such as for the formation of photovoltaic cells or for the formation of printed electronic circuits.
Abstract:
Functional composite materials comprise elemental inorganic particles within an organic matrix. The elemental inorganic materials generally comprise elemental metal, elemental metalloid, alloys thereof, or mixtures thereof. In alternative or additional embodiments, the inorganic particles can comprise a metal oxide, a metalloid oxide, a combination thereof or a mixture thereof. The inorganic particles can have an average primary particle size of no more than abut 250 nm and a secondary particle size in a dispersion when blended with the organic matrix of no more than about 2 microns. The particles can be substantially unagglomerated within the composite. The organic binder can be a functional polymer such as a semiconducting polymer. The inorganic particles can be surface modified, such as with a moiety having an aromatic functional group for desirable interactions with a semiconducting polymer. Appropriate solution based methods can be used for forming the composite from dispersions of the particles. The composites can be processed into products, such as printed electronics devices.
Abstract:
Photovoltaic elements can be formed by in-motion processing of a silicon ribbon. In some embodiments, only a single surface of a silicon ribbon is processed in-motion. In other embodiments both surfaces of a silicon ribbon is processed in-motion. In-motion processing can include, but is not limited to, formation of patterned or uniform doped regions within or along the silicon ribbon as well as the formation of patterned or uniform dielectric layers and/or electrically conductive elements on the silicon ribbon. After performing in-motion processing, additional processing steps can be performed after the ribbon is cut into portions. Furthermore, post-cut processing can include, but is not limited to, the formation of solar cells, photovoltaic modules, and solar panels.
Abstract:
Highly uniform silica nanoparticles can be formed into stable dispersions with a desirable small secondary particle size. The silican particles can be surface modified to form the dispersions. The silica nanoparticles can be doped to change the particle properties and/or to provide dopant for subsequent transfer to other materials. The dispersions can be printed as an ink for appropriate applications. The dispersions can be used to selectively dope semiconductor materials such as for the formation of photovoltaic cells or for the formation of printed electronic circuits.