Systems, devices, and methods for beam combining in laser projectors

    公开(公告)号:US10718951B2

    公开(公告)日:2020-07-21

    申请号:US15852188

    申请日:2017-12-22

    Abstract: Systems, devices, and methods for beam combining within laser projectors are described. A laser projector includes first, second, and third laser diodes to generate red, green, and blue laser light respectively, a controllable scan mirror, and a heterogeneous beam splitter system. The red, green, and blue laser light have distinct maximum powers. The heterogeneous beam splitter system splits at least one of the red, green, and blue laser light and combines respective first portions of all three into an aggregate beam. Second portions of laser light are excluded from the aggregate beam. At the maximum power of each laser light the aggregate beam is white as defined by a target white point. The heterogeneous beam splitter system directs the aggregate beam towards the controllable scan mirror which scans the beam onto a projection surface. Decreasing the power of the laser light post-generation provides a larger range of aggregate beam colors.

    Systems, articles, and methods for capacitive electromyography sensors

    公开(公告)号:US10310601B2

    公开(公告)日:2019-06-04

    申请号:US16023300

    申请日:2018-06-29

    Abstract: Systems, articles, and methods for improved capacitive electromyography (“EMG”) sensors are described. The improved capacitive EMG sensors include one or more sensor electrode(s) that is/are coated with a protective barrier formed of a material that has a relative permittivity εr of about 10 or more. The protective barrier shields the sensor electrode(s) from moisture, sweat, skin oils, etc. while advantageously contributing to a large capacitance between the sensor electrode(s) and the user's body. In this way, the improved capacitive EMG sensors provide enhanced robustness against variations in skin and/or environmental conditions. Such improved capacitive EMG sensors are particularly well-suited for use in wearable EMG devices that may be worn by a user for an extended period of time and/or under a variety of skin and/or environmental conditions. A wearable EMG device that provides a component of a human-electronics interface and incorporates such improved capacitive EMG sensors is described.

    SYSTEMS, DEVICES, AND METHODS FOR WAVEGUIDE-BASED EYEBOX EXPANSION IN WEARABLE HEADS-UP DISPLAYS

    公开(公告)号:US20190094549A1

    公开(公告)日:2019-03-28

    申请号:US16143030

    申请日:2018-09-26

    Abstract: Systems, devices, and methods for eyebox expansion in wearable heads-up displays (“WHUDs”) are described. The WHUDs described herein each include a projector and an optical waveguide positioned in an optical path between the projector and an eye of the user. For any given light signal from the projector, the optical waveguide receives the light signal at an input coupler and outputs multiple instances or copies of the light signal from multiple discrete, spatially-separated output couplers. The multiple instances or copies of the light signal may be converged by the optical waveguide directly to respective exit pupils at the user's eye or may be routed by the optical waveguide to a holographic combiner in the user's field of view from which the light signals may be converged to respective exit pupils at the user's eye. The optical waveguide employs exit pupil replication to expand the eyebox of the WHUD.

    SYSTEMS, DEVICES, AND METHODS FOR OPTICAL WAVEGUIDES

    公开(公告)号:US20190079296A1

    公开(公告)日:2019-03-14

    申请号:US16128106

    申请日:2018-09-11

    Abstract: Systems, devices, and methods for optical waveguides that are well-suited for use in wearable heads-up displays (WHUDs) are described. An optical device comprises an optical waveguide including a volume of optically transparent material having a first longitudinal surface positioned opposite a second longitudinal surface across a width of the volume, an in-coupler, a liquid crystal out-coupler, and a controller to modulate a refractive index of the liquid crystal out-coupler. Light is in-coupled into the waveguide and is propagated along a length of the waveguide by total internal reflection between the longitudinal surfaces before being out-coupled by the liquid crystal out-coupler on a path that is dependent on the modulated refractive index of the liquid crystal out-coupler. In this way, light signals can be steered to create an image and/or to move an exit pupil of an image. WHUDs that employ such optical waveguides are also described.

    SYSTEMS, DEVICES, AND METHODS FOR OPTICAL WAVEGUIDES

    公开(公告)号:US20190079293A1

    公开(公告)日:2019-03-14

    申请号:US16127981

    申请日:2018-09-11

    Abstract: Systems, devices, and methods for optical waveguides that are well-suited for use in wearable heads-up displays (WHUDs) are described. An optical device comprises an optical waveguide including a volume of optically transparent material having a first longitudinal surface positioned opposite a second longitudinal surface across a width of the volume, a liquid crystal in-coupler, a controller to modulate a refractive index of the liquid crystal in-coupler, and an out-coupler. Light is in-coupled into the waveguide on a path that is dependent on the modulated refractive index of the liquid crystal in-coupler and is propagated along a length of the waveguide by total internal reflection between the longitudinal surfaces before being out-coupled by the out-coupler. In this way, light signals can be steered to create an image and/or to move an exit pupil of an image. WHUDs that employ such optical waveguides are also described.

    SYSTEMS, DEVICES, AND METHODS FOR MANUFACTURING AN EYEGLASS LENS

    公开(公告)号:US20190070806A1

    公开(公告)日:2019-03-07

    申请号:US16119499

    申请日:2018-08-31

    Inventor: Darren Ihmels

    Abstract: A provisional lens structure has a grip tab region that allows the provisional lens structure to be supported and maneuvered, for example during subsequent manufacturing operations to produce a finished lens, thereby reducing the risk of damage to the provisional lens structure as compared to conventional approaches in which the provisional lens is supported and maneuvered directly by the edge of the provisional lens.

Patent Agency Ranking