Abstract:
A method for manufacturing a circuit board featuring conductive patterns, said method comprising the following steps of:i) affixing a conductive layer, such as a metal foil (3), to a substrate material (1) selectively, such that a part of the conductive layer, such as the metal foil (3), comprising desired areas (3a) for the final product and narrow areas (3c) between the final product's conducting areas, is affixed to the substrate material (1) by means of a bond (2), and removal-intended more extensive areas (3b) of the conductive layer, for example the metal foil (3), are left substantially unattached to the substrate material in such a way that the removable area (3b) is in attachment with the substrate material (1) by not more than its edge portion to be patterned in a subsequent step ii) and possibly by sites which preclude a release of the removable areas prior to a step iii); ii) patterning, by a removal of material, the conductive layer, such as the metal foil (3), from narrow gaps between the desired conducting areas (3a), and from an outer periphery of the area (3b) removable in a solid state, for establishing conductor patterns; iii) removing the removable areas (3b), not affixed to the substrate material (1), from the conductive layer, such as the metal foil (3), in a solid state after the conductive layer's edge area, which was removed from the removable area's outer periphery during the course of step ii), no longer holds the removable areas (3b) attached by their edges to the substrate material.
Abstract:
The present invention relates to a process for electrochemically winning or refining copper by electrodepositing copper from an electrolyte solution containing the metal in ionogenic form, in which the electrolyte is passed through an electrolysis plant comprising at least one electrolytic cell, which in an electrolyte tank for receiving the electrolyte has at least two electrodes serving as anode and cathode, which are alternately arranged at a distance from each other, and to a corresponding plant. To increase the economic efficiency of such processes and plants, it is proposed in accordance with the invention to immerse the at least one cathode during operation of the electrolysis into the electrolyte over a length of at least 1.2 meters.
Abstract:
The invention relates to a transfer and insulation device (1) for electrically insulating electrodes, particularly anodes (2) and cathodes (3), used in the electrolytic cleaning of metals, from each other in an electrolytic tank (4), for distributing the electrodes as they are hanging in the electrolytic tank and for enabling the electrodes to be transferred, said transfer and insulation device (1) being made of one single piece.
Abstract:
Apparatus for transferring sheet-like objects from one position to another comprises a control frame including a vertical control member and a gripping device within the control frame and including a control member counterpart engaging the vertical control member of the control frame in a manner permitting relative movement of the control frame and the gripping device over a predetermined vertical range. A loading member is coupled to the gripping device for lowering the gripping device from an upper position to a lower position and for raising the gripping device from the lower position to the upper position, and a positioning member is attached to the gripping device for engaging a complementary member when the gripping device is at the lower position. When the gripping device is in the upper position the control frame is suspended from the gripping device and when the gripping device is lowered from the upper position to the lower position the control frame remains suspended from the gripping device until the control frame attains the lower position, whereupon downward movement of the control frame ceases and the gripping device continues downward movement relative to the control frame and the positioning member engages the complementary member.
Abstract:
A manufacturing method of electrical bridges, wherein a conductive pattern (2) from electroconductive material, such as metal foil, is applied over a substrate (1) made of electrically insulating material and the electroconductive material has at least one strip tongue (3) unattached to the substrate, one side of the tongue is attached to the conductive pattern (2), and the said strip tongue (3) is folded over an area insulated electrically from the conductive pattern (2), and the strip tongue (3) is connected electroconductively to a predetermined other part (5) of the conductive pattern (2).
Abstract:
The invention relates to a transfer and insulation device (1) for electrically insulating electrodes, particularly anodes (2) and cathodes (3), used in the electrolytic cleaning of metals, from each other in an electrolytic tank (4), for distributing the electrodes as they are hanging in the electrolytic tank and for enabling the electrodes to be transferred, said transfer and insulation device (1) being made of one single piece.
Abstract:
The invention relates to a method for inspecting the surface quality of the deposit created on the surface of an electrode in the electrolytic treatment of metals. According to the invention, a cathode (1) obtained from electrolytic treatment is illuminated by at least one light source (3) placed in an oblique position with respect to the plane (12) that constitutes the cathode surface, and an image of the illuminated surface (12) is made with at least one camera (8); said image is then transmitted to an image processing arrangement (9), and on the basis of said image, there are defined possible irregularities of the surface in order to classify the deposit (11) located on the cathode for the next processing step.
Abstract:
The invention relates to an electrode for electrolytic refining or electrowinning, said electrode (1, 21, 41) being provided with a hanger bar (3, 23, 43) attached to the edge of one plate-like mother plate, and the edges (4, 5, 6; 24, 30, 31; 44, 49, 50) of said electrode, apart from the edge to which the hanger bar is fastened, being protected with an edge strip (11, 12, 13; 29, 32, 33; 48, 51, 52) made of some insulating material, in which electrode at least part of the edge strips is at least partly placed in a groove (7, 25, 45) made in the electrode edge. According to the invention, at least in one electrode edge (4, 5, 6; 24, 30, 31; 44, 49, 50), there is formed a groove (7, 25, 45) for the electrode edge strip (11, 12, 13; 29, 32, 33; 48, 51, 52) made of some insulating material; the front end of said groove, located at the electrode edge (4, 5, 6; 24, 30 31; 44, 49, 50), being essentially equal in width with the rear end (10, 28, 53) of the groove placed inside the electrode. The invention also relates to a method for manufacturing the electrode (1, 21, 41).
Abstract:
A method for manufacturing a circuit board featuring conductive patterns, said method comprising the following steps of: i) affixing a conductive layer, such as a metal foil (3), to a substrate material (1) selectively, such that a part of the conductive layer, such as the metal foil (3), comprising desired areas (3a) for the final product and narrow areas (3c) between the final product's conducting areas, is affixed to the substrate material (1) by means of a bond (2), and removal-intended more extensive areas (3b) of the conductive layer, for example the metal foil (3), are left substantially unattached to the substrate material in such a way that the removable area (3b) is in attachment with the substrate material (1) by not more than its edge portion to be patterned in a subsequent step ii) and possibly by sites which preclude a release of the removable areas prior to a step iii); ii) patterning, by a removal of material, the conductive layer, such as the metal foil (3), from narrow gaps between the desired conducting areas (3a), and from an outer periphery of the area (3b) removable in a solid state, for establishing conductor patterns; iii) removing the removable areas (3b), not affixed to the substrate material (1), from the conductive layer, such as the metal foil (3), in a solid state after the conductive layer's edge area, which was removed from the removable area's outer periphery during the course of step ii), no longer holds the removable areas (3b) attached by their edges to the substrate material.
Abstract:
A laser process alignment measuring method applicable to a reel-to-reel manufacturing process including a laser process stage, wherein before at least one laser process stage, marks, patterns or surfaces (4,9) are made with printing ink on the base or carrier material of the web (2), and on which the laser beam used can make a mark (7, 10), for example, by removing or changing the printing ink, whereby at the laser process stage, another mark is plotted with the laser beam on the mark et al. printed with printing ink, and the position of the mark et al. printed with printing ink (4, 9) and the mark plotted with the laser (7, 10) are read optically to measure the alignment of the printing ink stage and the laser process stage.