Abstract:
A probe for recording and/or stimulating brain activity includes a connecting portion and at least one shank extending from the connecting portion. The at least one shank includes a first side, a second side opposed to the first side, and a fin protruding substantially perpendicularly from the second side and running on at least a part of a length of the at least one shank. The first side includes at least one recording and/or stimulating site.
Abstract:
The present invention provides a Vestibular Evoked Myogenic Potential monitoring system comprising an autonomous integrated system. The integrated system comprises an output being arranged for transferring a stimulation signal via an actuator to an equilibrium organ of a person, a processing and controlling block having an integrated radio and antenna, and an array of electrodes being attachable in the vicinity of at least one muscle of said person and being arranged for recording the responsive signal and for transferring this signal to the processing and controlling block. The processing and controlling block of the integrated system is arranged for generating a stimulus, for storing and processing the recorded signals, and for sending the processed data via a WL link to a processor.
Abstract:
A method of bonding two elements such as wafers used in microelectronics applications is disclosed. One inventive aspect relates to a method for bonding comprising producing on a first main surface of a first element a first solder ball, producing on a first main surface of a second element a second solder ball, providing contact between the first solder ball and the second solder ball, bonding the first element and the second element by applying a reflow act whereby the solder balls melt and form a joined solder ball structure. Prior to the bonding, the first solder ball is laterally embedded in a nonconductive material, such that the upper part of the first solder ball is not covered by the non-conductive material. Devices related to such methods are also disclosed.
Abstract:
A method of bonding two elements such as wafers used in microelectronics applications is disclosed. One inventive aspect relates to a method for bonding comprising producing on a first main surface of a first element a first solder ball, producing on a first main surface of a second element a second solder ball, providing contact between the first solder ball and the second solder ball, bonding the first element and the second element by applying a reflow act whereby the solder balls melt and form a joined solder ball structure. Prior to the bonding, the first solder ball is laterally embedded in a nonconductive material, such that the upper part of the first solder ball is not covered by the non-conductive material. Devices related to such methods are also disclosed.
Abstract:
A method of bonding two elements such as wafers used in microelectronics applications is disclosed. One inventive aspect relates to a method for bonding comprising producing on a first main surface of a first element a first solder ball, producing on a first main surface of a second element a second solder ball, providing contact between the first solder ball and the second solder ball, bonding the first element and the second element by applying a reflow act whereby the solder balls melt and form a joined solder ball structure. Prior to the bonding, the first solder ball is laterally embedded in a nonconductive material, such that the upper part of the first solder ball is not covered by the non-conductive material. Devices related to such methods are also disclosed.
Abstract:
A method of bonding two elements such as wafers used in microelectronics applications is disclosed. One inventive aspect relates to a method for bonding comprising producing on a first main surface of a first element a first solder ball, producing on a first main surface of a second element a second solder ball, providing contact between the first solder ball and the second solder ball, bonding the first element and the second element by applying a reflow act whereby the solder balls melt and form a joined solder ball structure. Prior to the bonding, the first solder ball is laterally embedded in a nonconductive material, such that the upper part of the first solder ball is not covered by the non-conductive material. Devices related to such methods are also disclosed.