Data center infrastructure optimization method based on causal learning

    公开(公告)号:US12253928B2

    公开(公告)日:2025-03-18

    申请号:US17289983

    申请日:2019-11-20

    Inventor: Gilles J. Benoit

    Abstract: Methods for active data center management by injecting randomized controlled signals in the operational controls of the cooling infrastructure of the data center and receiving response signals corresponding with the injected signals. The injected signals are used to adjust the operational controls of the cooling infrastructure, and the response signals relate to the operational conditions in the data center. Based upon the response signals along with independent and external variables, the randomized signals are continually injected into the cooling infrastructure and fine-tuned based upon the response signals. Optimum or improved parameters for controlling the cooling infrastructure of the data center are determined based upon the signal injections and corresponding responses.

    Display optical film and backlight unit

    公开(公告)号:US12210241B2

    公开(公告)日:2025-01-28

    申请号:US18381412

    申请日:2023-10-18

    Abstract: An optical stack for reflecting and transmitting light in a predetermined wavelength range includes stacked first and second optical films, the predetermined wavelength range defining a first wavelength range and a remaining wavelength range. For normally incident light and for each wavelength in a first wavelength range, the first optical film substantially reflects light having a first polarization state, and substantially transmits light having a second polarization state. For each of the first and second polarization states, for wavelengths in the first wavelength range, the second optical film has a maximum optical transmittance Tmax for light incident at a first incident angle, and an optical transmittance Tmax/2 for light incident at a second incident angle, where the second incident angle is greater than the first incident angle by less than about 50 degrees. For wavelengths in the remaining wavelength range, the second optical film reflects at least 80% of light.

    Multilayer Partial Mirror, Backlight, and Display System

    公开(公告)号:US20250020837A1

    公开(公告)日:2025-01-16

    申请号:US18895687

    申请日:2024-09-25

    Abstract: A multilayer partial mirror includes a plurality of alternating first a second polymeric layers numbering at least 50 in total, disposed between, and integrally formed with, opposing first and second polymeric skin layers. For a visible wavelength range extending from about 420 nm to about 680 nm and an incident light propagating in an incident plane that includes a x-direction, and for an s-polarized incident light, the multilayer partial mirror has an average reflectance Rs1 for a first incident angle of less than about 10 degrees, and an average reflectance Rs2 for a second incident angle of greater than about 45 degrees, and for a p-polarized incident light, the multilayer partial mirror has an average reflectance Rp1 for the first incident angle, and an average reflectance Rp2 for the second incident angle. Each of Rs2/Rs1 and Rp2/Rp1 is greater than about 1.15.

Patent Agency Ranking