Abstract:
A system includes multiple devices configured to emit and detect germicidal radiation. Each of the multiple devices operates in emitting mode when connected to a drive source in a forward bias configuration and operates in detecting mode when disconnected from the drive source or when connected to the drive source in a reverse bias configuration. Cycling circuitry generates a sequence of control signals that control switching circuitry to change the connections of the devices to the drive source in a cycle in which one or more of the multiple devices are switched to detecting mode and senses radiation emitted by one or more of the multiple devices simultaneously operating in emitting mode. Each device operating in detecting mode generates a signal in response to the sensed radiation. Detection circuitry detects signals of the devices operating in detecting mode and generates a detection output in response to the detected signals.
Abstract:
A system includes multiple devices configured to emit and detect germicidal radiation. Each of the multiple devices operates in emitting mode when connected to a drive source in a forward bias configuration and operates in detecting mode when disconnected from the drive source or when connected to the drive source in a reverse bias configuration. Cycling circuitry generates a sequence of control signals that control switching circuitry to change the connections of the devices to the drive source in a cycle in which one or more of the multiple devices are switched to detecting mode and senses radiation emitted by one or more of the multiple devices simultaneously operating in emitting mode. Each device operating in detecting mode generates a signal in response to the sensed radiation. Detection circuitry detects signals of the devices operating in detecting mode and generates a detection output in response to the detected signals.
Abstract:
Aspects of the present disclosure are directed toward methods, apparatuses and systems for operating at a fluid-maintenance site. In certain embodiments, the methods, apparatuses, and systems include a fluid filter, a sensor that provides parameters that characterize fluid flowing through the fluid filter, and a wireless interface circuit. The wireless interface circuit operates in a set-up mode and a normal-operation mode. In the set-up mode, the wireless interface circuit operates by communicating authentication data with a mobile data-processing device while the mobile data-processing device is proximate to the fluid-maintenance site. In the normal-operation mode, the wireless interface circuit operates by sending the parameters wirelessly, according to the authentication protocol, to a remotely-situated server via a wireless communication medium and a broadband connection.
Abstract:
Aspects of the present disclosure are directed toward methods, apparatuses and systems for operating at a fluid-maintenance site. In certain embodiments, the methods, apparatuses, and systems include a fluid filter, a sensor that provides parameters that characterize fluid flowing through the fluid filter, and a wireless interface circuit. The wireless interface circuit operates in a set-up mode and a normal-operation mode. In the set-up mode, the wireless interface circuit operates by communicating authentication data with a mobile data-processing device while the mobile data-processing device is proximate to the fluid-maintenance site. In the normal-operation mode, the wireless interface circuit operates by sending the parameters wirelessly, according to the authentication protocol, to a remotely-situated server via a wireless communication medium and a broadband connection.