CONDUCTIVE MATERIALS FOR DIRECT BONDING

    公开(公告)号:US20250006679A1

    公开(公告)日:2025-01-02

    申请号:US18391173

    申请日:2023-12-20

    Abstract: A structure includes a first substrate including a first layer having at least one electrically conductive first portion and at least one electrically insulative second portion and a second substrate including a second layer having at least one electrically conductive third portion and at least one electrically insulative fourth portion. The structure further includes an interface layer having at least one electrically conductive oxide material between the first layer and the second layer. The at least one electrically conductive oxide material includes at least one first region between and in electrical communication with the at least one electrically conductive first portion and the at least one electrically conductive third portion, and at least one second region between the at least one electrically insulative second portion and the at least one electrically insulative fourth portion.

    METHOD FOR PREPARING A SURFACE FOR DIRECT-BONDING

    公开(公告)号:US20240234159A9

    公开(公告)日:2024-07-11

    申请号:US18475977

    申请日:2023-09-27

    Abstract: Improved bonding surfaces for microelectronics are provided. An example method of protecting a dielectric surface for direct bonding during a microelectronics fabrication process includes overfilling cavities and trenches in the dielectric surface with a temporary filler that has an approximately equal chemical and mechanical resistance to a chemical-mechanical planarization (CMP) process as the dielectric bonding surface. The CMP process is applied to the temporary filler to flatten the temporary filler down to the dielectric bonding surface. The temporary filler is then removed with an etchant that is selective to the temporary filler, but nonreactive toward the dielectric surface and toward inner surfaces of the cavities and trenches in the dielectric bonding surface. Edges of the cavities remain sharp, which minimizes oxide artifacts, strengthens the direct bond, and reduces the bonding seam.

    CHEMICAL MECHANICAL POLISHING FOR HYBRID BONDING

    公开(公告)号:US20240379607A1

    公开(公告)日:2024-11-14

    申请号:US18783242

    申请日:2024-07-24

    Abstract: Representative implementations of techniques and methods include chemical mechanical polishing for hybrid bonding. The disclosed methods include depositing and patterning a dielectric layer on a substrate to form openings in the dielectric layer, depositing a barrier layer over the dielectric layer and within a first portion of the openings, and depositing a conductive structure over the barrier layer and within a second portion of the openings not occupied by the barrier layer, at least a portion of the conductive structure in the second portion of the openings coupled or contacting electrical circuitry within the substrate. Additionally, the conductive structure is polished to reveal portions of the barrier layer deposited over the dielectric layer and not in the second portion of the openings. Further, the barrier layer is polished with a selective polish to reveal a bonding surface on or at the dielectric layer.

    INTERCONNECT STRUCTURES
    8.
    发明申请

    公开(公告)号:US20240379539A1

    公开(公告)日:2024-11-14

    申请号:US18782629

    申请日:2024-07-24

    Abstract: Representative techniques and devices, including process steps may be employed to mitigate undesired dishing in conductive interconnect structures and erosion of dielectric bonding surfaces. For example, an embedded layer may be added to the dished or eroded surface to eliminate unwanted dishing or voids and to form a planar bonding surface. Additional techniques and devices, including process steps may be employed to form desired openings in conductive interconnect structures, where the openings can have a predetermined or desired volume relative to the volume of conductive material of the interconnect structures. Each of these techniques, devices, and processes can provide for the use of larger diameter, larger volume, or mixed-sized conductive interconnect structures at the bonding surface of bonded dies and wafers.

Patent Agency Ranking