Abstract:
A chromatographic separation column for characterizing surfactant purity is disclosed. The column includes a separation medium having a particulate porous substrate with monofunctional silane with diisopropyl side chain groups and a pendant cyano functional group held within a column. The porous substrate has a pore size of about 50 Å to about 500 Å and an average particle size of about 1.0 μm to about 100 μm. The column has an inner diameter of about 1.0 to 100 mm, e.g., 4.6 mm and a length from about 10 mm to about 250 mm. Methods of facilitating characterization of polysorbate 80 by providing a sample containing polysorbate 80 and one or more reaction products of polysorbate 80 and a chromatographic separation column are disclosed. Methods of characterizing polysorbate 80 by separating polysorbate 80 and one or more reaction products of polysorbate 80 are also disclosed.
Abstract:
Modified silica particles are provided. Aspects of the particles include an outer layer that is composed of organically-modified silica comprising a siloxane-linked hydrophilic group, such as a charged functional group or a polar neutral functional group. The modified silica particles can form the basis of a variety of chromatography support materials. Also provided are methods of preparing the subject particles. Aspects of the methods include contacting silica particles with water, an ionic fluoride and an organosilane reagent comprising a hydrophilic moiety to produce modified silica particles wherein the hydrophilic moiety of the organosilane reagent is incorporated into an outer layer of the silica particles. Chromatography supports and kits including the subject particles and methods of using the same are also provided.
Abstract:
Superficially porous particles are provided. Aspects of the superficially porous particles include a non-porous inner core and a porous outer shell that includes inner and outer porous regions. The inner porous region can include ordered cylindrical pores substantially perpendicular to the non-porous inner core. The outer porous region can include conical pores which extend to the surface of the particles and which are in fluid communication with the cylindrical pores of the inner porous region. Also provided are methods of making the subject superficially porous particles. Aspects of the methods include subjecting substantially solid inorganic oxide particles to agitation in an aqueous solution in the presence of a first cationic surfactant and a second anionic surfactant, which together form micelles, to pseudomorphically transform the particles.
Abstract:
The invention provides superficially porous metal oxide or hybrid metal oxide monoliths with ordered pore structures. The superficially porous hybrid silica monoliths of the invention provide several major advantages over existing silica monoliths. When used in chromatography, the superficially porous hybrid silica monoliths of the invention deliver fast separation at very low back pressure and possess superb pH stability and much improved mechanical strength.
Abstract:
There is disclosed a method of producing etched non-porous particles. The method includes, in some examples, coating a non-porous particle with a hydrophilic polymer and treating the coated particle with acid or base. Also provided is etched non-porous particles capable of separating a variety of analytes, including biomolecules.
Abstract:
The invention provides superficially porous metal oxide particles with precisely controlled particle density and to methods for their preparation and use, as well as to separation devices (e.g., high pressure liquid chromatography) having superficially porous particles.
Abstract:
The invention provides superficially porous metal oxide particles with precisely controlled particle density and to methods for their preparation and use, as well as to separation devices (e.g., high pressure liquid chromatography) having superficially porous particles.
Abstract:
Superficially porous particles are provided. Aspects of the superficially porous particles include a non-porous inner core and a porous outer shell that includes inner and outer porous regions. The inner porous region can include ordered cylindrical pores substantially perpendicular to the non-porous inner core. The outer porous region can include conical pores which extend to the surface of the particles and which are in fluid communication with the cylindrical pores of the inner porous region. Also provided are methods of making the subject superficially porous particles. Aspects of the methods include subjecting substantially solid inorganic oxide particles to agitation in an aqueous solution in the presence of a first cationic surfactant and a second anionic surfactant, which together form micelles, to pseudomorphically transform the particles.
Abstract:
The present invention is a process for making an inorganic/organic hybrid totally porous spherical silica particles by self assembly of surfactants that serve as organic templates via pseudomorphic transformation.