Abstract:
The present disclosure, in one aspect, relates to a polyamide solution which can suppress the yellowness. The present disclosure, in one or a plurality of embodiments, relates to a polyamide solution comprising an aromatic polyamide and a solvent, the aromatic polyamide comprising a constitutional unit having one or more free carboxyl groups and having an aromatic ring structure and an alicyclic structure in the main chain. Further, the present disclosure, in one aspect, relates to a laminated composite material, comprising a glass plate and a polyamide resin layer; the polyamide resin layer laminated onto one surface of the glass plate, the polyamide resin layer having yellowness (JIS K7373) of 2.4 or less; and the polyamide resin layer obtained by applying the solution onto the glass plate.
Abstract:
In an aspect, the present disclosure relates to a polyamide solution comprising an aromatic polyamide and a solvent, wherein a Young's modulus of at least one direction of a cast film produced by casting the polyamide solution on a glass plate is 3.0 GPa or more, and a tensile strength of the cast film is 100 MPa or more and 250 MPa or less. In another aspect, the present disclosure relates to a polyamide solution comprising an aromatic polyamide and a solvent, wherein a Young's modulus of at least one direction of a cast film produced by casting the polyamide solution on a glass plate is 3.0 GPa or more, and an aromatic polyamide of the polyamide solution has a constitutional unit represented by following general formulae (I) and (II).
Abstract:
In one or a plurality of embodiments, a process for manufacturing polyamide without using PrO (propylene oxide) in synthesis is provided. In one or a plurality of embodiments, provided is a process for manufacturing polyamide, including steps (a) to (c): (a) reacting diacid dichloride monomer with at least two kinds of diamine monomers in a solvent so as to generate polyamide; and (b) removing hydrochloric acid physically out of a reaction system, the hydrochloric acid being generated during the reaction in the step (a); or (c) adding a trapping reagent capable of trapping hydrochloric acid, at any time at least before the step (a), at the same time of starting the step (a), or during the step (a), wherein at least one of the diamine monomers is a diamine monomer containing a carboxyl group, and the trapping reagent does not include propylene oxide.
Abstract:
Provided are a resin composition and a substrate that are capable of being used for manufacturing an electronic device including a transparent resin film having an excellent display property, a method of manufacturing such a resin composition and a method of manufacturing the electronic device using such a substrate and the electronic device. The resin composition of the present invention contains an aromatic polyamide, an aromatic multifunctional compound having two or more functional groups including a carboxyl group or an amino group, and a solvent dissolving the aromatic polyamide.
Abstract:
Provided are a resin composition and a substrate that are capable of being used for manufacturing an electronic device having excellent light extraction efficiency. The resin composition contains a polymer and a solvent dissolving the polymer. The resin composition is used to form a layer, and when refractive indexes of the layer along two perpendicular in-plane directions thereof are respectively defined as “Nx” and “Ny” and a refractive index of the layer along a thickness direction thereof is defined as “Nz”, Nx, Ny and Nz satisfy a relationship of “(Nx+Ny)/2−Nz”>0.01. Further, a method of manufacturing the electronic device by using such a substrate, and the electronic device are also provided.
Abstract:
Films with optical transmittance of >80% between 400 and 750 nm and with coefficient of thermal expansion less than 20 ppm/° C. are prepared from aromatic polyamides that are soluble in polar organic solvents yet have glass transition temperatures >300° C. The films are cross-linked in the solid state by heating at elevated temperatures for short periods of time in the presence of multifunctional epoxides. Surprisingly, the optical and thermal properties of the films do not change significantly during the curing process. The temperature required for the crosslinking process to take place can be reduced by the presence of a few free, pendant carboxyl groups along the polyamide backbones. The films are useful as flexible substrates for electronic displays and photovoltaic devices.
Abstract:
An optical compensation film is disclosed herein, which is made by uniaxially or biaxially stretching of a multilayer film including a first polymer film having a refractive index profile satisfying the equations of (nx+ny)/2≥nz and |nx−ny|
Abstract:
Films with optical transmittance of >80% between 400 and 750 nm and with coefficient of thermal expansion less than 20 ppm/° C. are prepared from aromatic polyamides that are soluble in polar organic solvents yet have glass transition temperatures >300° C. The films are cross-linked in the solid state by heating at elevated temperatures for short periods of time in the presence of multifunctional epoxides. Surprisingly, the optical and thermal properties of the films do not change significantly during the curing process. The temperature required for the crosslinking process to take place can be reduced by the presence of a few free, pendant carboxyl groups along the polyamide backbones. The films are useful as flexible substrates for electronic displays and photovoltaic devices.
Abstract:
A flexible substrate with a high optical transparency (>80% from 400 to 750 nm) that is retained after exposure to 300° C., near-zero birefringence (
Abstract:
Solvent resistant, transparent films prepared from solutions of aromatic polyamides and multi-functional carboxylic acids in polar aprotic solvents are described herein. Solvent resistance is achieved by heating the films for a short time above 300° C. near the polyamide Tg. The films have CTEs less than 40 ppm/° C. and are optically clear displaying transmittance above 75% between 400 and 750 nm. The films are useful as substrates for flexible electronic devices.