Abstract:
A matrix converter for transforming electrical energy between at least one voltage source, in particular a power supply network, and at least one current source, in particular a load, said converter including a matrix of switches connecting said voltage sources to said current sources, wherein each of said switches has two terminals disposed in respective distinct parallel planes and a photoconductive diamond substrate interposed between said two terminals of the switch, each switch being controlled by means of a light source irradiating the diamond substrate interposed between the two terminals.
Abstract:
An electronic power module including at least one semi-conductor power component disposed on an electrically insulating substrate, wherein said semi-conductor power component includes a face in contact with said substrate, which face is metallized in part and is covered in part in a diamond layer, said metallized portion being in contact with a conductor track provided on the surface of the substrate, and said diamond-covered portion being in register with an opening formed in the substrate, said substrate including a face remote from the semi-conductor component which is cooled by a liquid coolant, said liquid flowing into said opening and over the surface of the diamond-covered portion.
Abstract:
A matrix converter for transforming electrical energy between at least one voltage source, in particular a power supply network, and at least one current source, in particular a load, said converter including a matrix of switches connecting said voltage sources to said current sources, wherein each of said switches has two terminals which are interconnected via a photoconductive layer of diamond, each switch being controlled by means of a light source irradiating the layer of diamond interposed between the two terminals of the switch.
Abstract:
A method of testing a power module including a control gate, an emitter, a collector, at least one power component on a dielectric substrate and a diode connected in antiparallel with the power component measures partial discharges occurring between the emitter and the collector when an alternating current voltage source superimposed on a direct current voltage source is connected between the collector and the emitter of the power module. The voltage Vtest received by the power module between the collector and the emitter verifies at all times the condition Vtest>0 so that the diode never conducts. The power component is maintained in a turned off state during the test by means of a direct current voltage source connected between the control gate and the emitter.