Abstract:
A virtualization platform for Network Functions Virtualization (NFV) is provided. The virtualization platform may include a host processor coupled to an acceleration coprocessor. The acceleration coprocessor may be a reconfigurable integrated circuit to help provide improved flexibility and agility for the NFV. The coprocessor may include multiple virtual function hardware acceleration modules each of which is configured to perform a respective accelerator function. A virtual machine running on the host processor may wish to perform multiple accelerator functions in succession at the coprocessor on a given data. In one suitable arrangement, intermediate data output by each of the accelerator functions may be fed back to the host processor. In another suitable arrangement, the successive function calls may be chained together so that only the final resulting data is fed back to the host processor.
Abstract:
Techniques and mechanisms provide a flexible mapping for physical functions and virtual functions in an environment including virtual machines.
Abstract:
A virtualization platform for Network Functions Virtualization (NFV) is provided. The virtualization platform may include a host processor coupled to an acceleration coprocessor. The acceleration coprocessor may be a reconfigurable integrated circuit to help provide improved flexibility and agility for the NFV. The coprocessor may include multiple virtual function hardware acceleration modules each of which is configured to perform a respective accelerator function. A virtual machine running on the host processor may wish to perform multiple accelerator functions in succession at the coprocessor on a given data. In one suitable arrangement, intermediate data output by each of the accelerator functions may be fed back to the host processor. In another suitable arrangement, the successive function calls may be chained together so that only the final resulting data is fed back to the host processor.
Abstract:
Techniques and mechanisms provide a flexible mapping for physical functions and virtual functions in an environment including virtual machines.
Abstract:
A virtualization platform for Network Functions Virtualization (NFV) is provided. The virtualization platform may include a host processor coupled to an acceleration coprocessor. The acceleration coprocessor may be a reconfigurable integrated circuit to help provide improved flexibility and agility for the NFV. To help improve performance predictability, a hierarchical accelerator registry may be maintained on the coprocessor and/or on local servers. The accelerator registry may assign different classes and speed grades to various types of available resources to help the virtualized network better predict certain task latencies. The accelerator registry may be periodically updated based on changes detected in the local storage and hardware or based on changes detected in remote networks.
Abstract:
A virtualization platform for Network Functions Virtualization (NFV) is provided. The virtualization platform may include a host processor coupled to an acceleration coprocessor. The acceleration coprocessor may be a reconfigurable integrated circuit to help provide improved flexibility and agility for the NFV. The coprocessor may include multiple virtual function hardware acceleration modules each of which is configured to perform a respective accelerator function. A virtual machine running on the host processor may wish to perform multiple accelerator functions in succession at the coprocessor on a given data. In one suitable arrangement, intermediate data output by each of the accelerator functions may be fed back to the host processor. In another suitable arrangement, the successive function calls may be chained together so that only the final resulting data is fed back to the host processor.
Abstract:
A virtualization platform for Network Functions Virtualization (NFV) is provided. The virtualization platform may include a host processor coupled to an acceleration coprocessor. The acceleration coprocessor may be a reconfigurable integrated circuit to help provide improved flexibility and agility for the NFV. The coprocessor may include multiple virtual function hardware acceleration modules each of which is configured to perform a respective accelerator function. A virtual machine running on the host processor may wish to perform multiple accelerator functions in succession at the coprocessor on a given data. In one suitable arrangement, intermediate data output by each of the accelerator functions may be fed back to the host processor. In another suitable arrangement, the successive function calls may be chained together so that only the final resulting data is fed back to the host processor.
Abstract:
A virtualization platform for Network Functions Virtualization (NFV) is provided. The virtualization platform may include a host processor coupled to an acceleration coprocessor. The acceleration coprocessor may be a reconfigurable integrated circuit to help provide improved flexibility and agility for the NFV. The coprocessor may include multiple virtual function hardware acceleration modules each of which is configured to perform a respective accelerator function. A virtual machine running on the host processor may wish to perform multiple accelerator functions in succession at the coprocessor on a given data. In one suitable arrangement, intermediate data output by each of the accelerator functions may be fed back to the host processor. In another suitable arrangement, the successive function calls may be chained together so that only the final resulting data is fed back to the host processor.
Abstract:
Techniques and mechanisms provide a flexible mapping for physical functions and virtual functions in an environment including virtual machines.
Abstract:
A virtualization platform for Network Functions Virtualization (NFV) is provided. The virtualization platform may include a host processor coupled to an acceleration coprocessor. The acceleration coprocessor may be a reconfigurable integrated circuit to help provide improved flexibility and agility for the NFV. The traffic at the NFV platform may be controlled by a distributed Quality of Service (QoS) manager. The distributed QoS manager may include multiple QoS modules each of which serves to perform priority queuing independently for its associated component or interface. For example, the NFV platform may include a first QoS module for arbitrating among multiple virtual machines, a second QoS module for performing priority queuing for data packets received at an external network port, a third QoS module for arbitrating among memory accesses at a coprocessor external memory interface, fourth QoS module for arbitrating accesses among multiple hardware acceleration slices, etc.