Abstract:
Techniques and mechanisms provide a flexible mapping for physical functions and virtual functions in an environment including virtual machines.
Abstract:
A virtualization platform for Network Functions Virtualization (NFV) is provided. The virtualization platform may include a host processor coupled to an acceleration coprocessor. The acceleration coprocessor may be a reconfigurable integrated circuit to help provide improved flexibility and agility for the NFV. The coprocessor may include multiple virtual function hardware acceleration modules each of which is configured to perform a respective accelerator function. A virtual machine running on the host processor may wish to perform multiple accelerator functions in succession at the coprocessor on a given data. In one suitable arrangement, intermediate data output by each of the accelerator functions may be fed back to the host processor. In another suitable arrangement, the successive function calls may be chained together so that only the final resulting data is fed back to the host processor.
Abstract:
Techniques and mechanisms provide a flexible mapping for physical functions and virtual functions in an environment including virtual machines.
Abstract:
Techniques and mechanisms provide a flexible mapping for physical functions and virtual functions in an environment including virtual machines.
Abstract:
A virtualization platform for Network Functions Virtualization (NFV) is provided. The virtualization platform may include a host processor coupled to an acceleration coprocessor. The acceleration coprocessor may be a reconfigurable integrated circuit to help provide improved flexibility and agility for the NFV. The coprocessor may include multiple virtual function hardware acceleration modules each of which is configured to perform a respective accelerator function. A virtual machine running on the host processor may wish to perform multiple accelerator functions in succession at the coprocessor on a given data. In one suitable arrangement, intermediate data output by each of the accelerator functions may be fed back to the host processor. In another suitable arrangement, the successive function calls may be chained together so that only the final resulting data is fed back to the host processor.
Abstract:
A virtualization platform for Network Functions Virtualization (NFV) is provided. The virtualization platform may include a host processor coupled to an acceleration coprocessor. The acceleration coprocessor may be a reconfigurable integrated circuit to help provide improved flexibility and agility for the NFV. The coprocessor may include multiple virtual function hardware acceleration modules each of which is configured to perform a respective accelerator function. A virtual machine running on the host processor may wish to perform multiple accelerator functions in succession at the coprocessor on a given data. In one suitable arrangement, intermediate data output by each of the accelerator functions may be fed back to the host processor. In another suitable arrangement, the successive function calls may be chained together so that only the final resulting data is fed back to the host processor.
Abstract:
Techniques and mechanisms provide a flexible mapping for physical functions and virtual functions in an environment including virtual machines.
Abstract:
Systems and methods are provided herein for implementing an OAM co-processor that is connected to a switching device. The ingress engine may determine whether the received input data comprises OAM information, and the ingress engine may selectively process or forward the input data to the switching device. If the ingress engine determines that the input data does comprise OAM information, the ingress engine may intercept the input data and process it at the OAM co-processor. This may cause OAM information to be processed utilizing the latest known OAM technology, rather than the potentially dated OAM processing technology of the switching device.
Abstract:
A virtualization platform for Network Functions Virtualization (NFV) is provided. The virtualization platform may include a host processor coupled to an acceleration coprocessor. The acceleration coprocessor may be a reconfigurable integrated circuit to help provide improved flexibility and agility for the NFV. The coprocessor may include multiple virtual function hardware acceleration modules each of which is configured to perform a respective accelerator function. A virtual machine running on the host processor may wish to perform multiple accelerator functions in succession at the coprocessor on a given data. In one suitable arrangement, intermediate data output by each of the accelerator functions may be fed back to the host processor. In another suitable arrangement, the successive function calls may be chained together so that only the final resulting data is fed back to the host processor.
Abstract:
Techniques and mechanisms provide a flexible mapping for physical functions and virtual functions in an environment including virtual machines.