Abstract:
A system is disclosed for reducing overlay errors by controlling gas flow around a patterning device of a lithographic apparatus. The lithographic apparatus includes an illumination system configured to condition a radiation beam. The lithographic apparatus further includes a movable stage comprising a support structure that may be configured to support a patterning device. The patterning device may be configured to impart the radiation beam with a pattern in its cross-section to form a patterned radiation beam. In addition, the lithographic apparatus comprises a plate (410) positioned between the movable stage (401) and the projection system (208). The plate includes an opening (411) that comprises a first sidewall (411a) and a second sidewall (411b). The plate may be configured to provide a gas flow pattern (424) in a region between the movable stage and the projection system that is substantially perpendicular to an optical axis of the illumination system.
Abstract:
An immersion lithographic apparatus typically includes a fluid handling system. The fluid handling system generally has a two-phase fluid extraction system configured to remove a mixture of gas and liquid from a given location. Because the extraction fluid comprises two phases, the pressure in the extraction system can vary. This pressure variation can be passed through the immersion liquid and cause inaccuracy in the exposure. To reduce the pressure fluctuation in the extraction system, a buffer chamber may be used. This buffer chamber may be connected to the fluid extraction system in order to provide a volume of gas which reduces pressure fluctuation. Alternatively or additionally, a flexible wall may be provided somewhere in the fluid extraction system. The flexible wall may change shape in response to a pressure change in the fluid extraction system. By changing shape, the flexible wall can help to reduce, or eliminate, the pressure fluctuation.
Abstract:
A method of modifying a lithographic apparatus comprising an illumination system for providing a radiation beam, a support structure for supporting a patterning device to impart the radiation beam with a pattern in its cross-section, a first lens for projecting the radiation beam at the patterning device with a first magnification, a substrate table for holding a substrate, and a first projection system for projecting the patterned radiation beam at a target portion of the substrate with a second magnification. The first lens and the first projection system together provide a third magnification. The method comprises reducing by a first factor the first magnification to provide a second lens for projecting the radiation beam with a fourth magnification; and increasing by the first factor the second magnification to provide a second projection system for projecting the patterned radiation beam at the target portion of the substrate with a fifth magnification.
Abstract:
An immersion lithographic apparatus typically includes a fluid handling system. The fluid handling system generally has a two-phase fluid extraction system configured to remove a mixture of gas and liquid from a given location. Because the extraction fluid comprises two phases, the pressure in the extraction system can vary. This pressure variation can be passed through the immersion liquid and cause inaccuracy in the exposure. To reduce the pressure fluctuation in the extraction system, a buffer chamber may be used. This buffer chamber may be connected to the fluid extraction system in order to provide a volume of gas which reduces pressure fluctuation. Alternatively or additionally, a flexible wall may be provided somewhere in the fluid extraction system. The flexible wall may change shape in response to a pressure change in the fluid extraction system. By changing shape, the flexible wall can help to reduce, or eliminate, the pressure fluctuation.