Systems and methods for manufacturing a double-sided electrostatic clamp

    公开(公告)号:US12189310B2

    公开(公告)日:2025-01-07

    申请号:US17790341

    申请日:2020-12-04

    Abstract: Systems, apparatuses, and methods are provided for manufacturing an electrostatic clamp. An example method can include forming, during a first duration of time comprising a first time, a top clamp comprising a first set of electrodes and a plurality of burls. The method can further include forming, during a second duration of time comprising a second time that overlaps the first time, a core comprising a plurality of fluid channels configured to carry a thermally conditioned fluid. The method can further include forming, during a third duration of time comprising a third time that overlaps the first time and the second time, a bottom clamp comprising a second set of electrodes. In some aspects, the example method can include manufacturing the electrostatic clamp without an anodic bond.

    APPARATUS FOR AND METHOD OF LITHOGRAPHY SUPPORT CLEANING

    公开(公告)号:US20240419089A1

    公开(公告)日:2024-12-19

    申请号:US18821789

    申请日:2024-08-30

    Abstract: Apparatus for and method of removing a contaminant from a working surface of a lithography support such as a reticle or wafer stage in an EUV or a DUV photolithography system in which a base supporting the substrate is provided with a surface profile so as to be thicker towards a middle portion of the base so that when a substrate supported by the base is pressed between the working surface and the base the contaminant is transferred from the working surface to the substrate.

    Optical designs of miniaturized overlay measurement system

    公开(公告)号:US12140872B2

    公开(公告)日:2024-11-12

    申请号:US17796640

    申请日:2021-01-21

    Abstract: A compact sensor apparatus having an illumination beam, a beam shaping system, a polarization modulation system, a beam projection system, and a signal detection system. The beam shaping system is configured to shape an illumination beam generated from the illumination system and generate a flat top beam spot of the illumination beam over a wavelength range from 400 nm to 2000 nm. The polarization modulation system is configured to provide tenability of linear polarization state of the illumination beam. The beam projection system is configured to project the flat top beam spot toward a target, such as an alignment mark on a substrate. The signal detection system is configured to collect a signal beam comprising diffraction order sub-beams generated from the target, and measure a characteristic (e.g., overlay) of the target based on the signal beam.

    Overlay measurement system using lock-in amplifier technique

    公开(公告)号:US12124177B2

    公开(公告)日:2024-10-22

    申请号:US17782622

    申请日:2020-11-18

    Abstract: A detection system (200) includes an illumination system (210), a first optical system (232), a phase modulator (220), a lock-in detector (255), and a function generator (230). The illumination system is configured to transmit an illumination beam (218) along an illumination path. The first optical system is configured to transmit the illumination beam toward a diffraction target (204) on a substrate (202). The first optical system is further configured to transmit a signal beam including diffraction order sub-beams (222, 224, 226) that are diffracted by the diffraction target. The phase modulator is configured to modulate the illumination beam or the signal beam based on a reference signal. The lock-in detector is configured to collect the signal beam and to measure a characteristic of the diffraction target based on the signal beam and the reference signal. The function generator is configured to generate the reference signal for the phase modulator and the lock-in detector.

    FAST UNIFORMITY DRIFT CORRECTION
    5.
    发明公开

    公开(公告)号:US20240319608A1

    公开(公告)日:2024-09-26

    申请号:US18262467

    申请日:2022-01-16

    Abstract: Systems, apparatuses, and methods are provided for adjusting illumination slit uniformity in a lithographic apparatus. An example method can include irradiating, by a radiation source, a portion of a finger assembly with radiation. The example method can further include receiving, by a radiation detector, at least a portion of the radiation in response to the irradiating of the portion of the finger assembly. The example method can further include determining, by a processor, a change in a shape of the finger assembly based on the received radiation. The example method can further include generating, by the processor, a control signal configured to modify a position of the finger assembly based on the determined change in the shape of the finger assembly. Subsequently, the example method can include transmitting, by the processor, the control signal to a motion control system coupled to the finger assembly.

    Optical component and clamp used in lithographic apparatus

    公开(公告)号:US11892779B2

    公开(公告)日:2024-02-06

    申请号:US17772201

    申请日:2020-10-21

    CPC classification number: G03F7/70891 G02B7/1815 G03F7/7015

    Abstract: An optical element and a lithographic apparatus including the optical element. The optical element includes a first member having a curved optical surface and a heat transfer surface, and a second member that comprises at least one recess, the at least one recess sealed against the heat transfer surface to form at least one closed channel between the first member and the second member to allow fluid to flow therethrough for thermal conditioning of the curved optical surface. In an embodiment, one or more regions of the heat transfer surface exposed to the at least one closed channel are positioned along a curved profile similar to that of the curved optical surface.

    METROLOGY SYSTEM AND COHERENCE ADJUSTERS
    10.
    发明公开

    公开(公告)号:US20240027913A1

    公开(公告)日:2024-01-25

    申请号:US18255261

    申请日:2021-12-02

    CPC classification number: G03F7/70091 G03F7/70625 G03F7/70633

    Abstract: A metrology system (400) includes a multi-source radiation system. The multi-source radiation system includes a waveguide device (502) and the multi-source radiation system is configured to generate one or more beams of radiation. The metrology system (400) further includes a coherence adjuster (500) including a multimode waveguide device (504). The multimode waveguide device (504) includes an input configured to receive the one or more beams of radiation from the multi-source radiation system (514) and an output (518) configured to output a coherence adjusted beam of radiation for irradiating a target (418). The metrology system (400) further includes an actuator (506) coupled to the waveguide device (502) and configured to actuate the waveguide device (502) so as to change an impingement characteristic of the one or more beams of radiation at the input of the multimode waveguide device (504).

Patent Agency Ranking