Abstract:
THE invention is a method of producing an individual an array, or multiple arrays of quantum dots. Single dots, as well as two or three-dimensional groupings may be created. The invention involves the transfer of quantum dots from a receptor site on a substrate where they are originally created to a separate substrate or layer, with a repetition of the process and a variation in the original pattern to create different structures.
Abstract:
High speed flex printed circuit boards (FLEX-PCBs) are disclosed comprising a dielectrics systems with the back-side trenches, adhesives, signal lines and ground-plans, wherein the signal line and ground-plan are located on the dielectrics. Using of the open trenches in the substrate help to reduce the microwave loss and dielectric constant and thus increasing the signal carrying speed of the interconnects. Thus, according to the present invention, it is possible to provide a simply constructed high speed FLEX-PCB using the conventional material and conventional FLEX-PCB manufacturing which facilitates the design of circuits with controlled bandwidth based on the trench opening in the dielectrics, and affords excellent connection reliability. As the effective dielectric constant is reduced, the signal width is required to make wider or the dielectric thickness is required to make thinner keeping fixed characteristics impedance. The fundamental techniques disclosed here can also be used for high-speed packaging.
Abstract:
An optoelectronics chip-to-chip interconnects system is provided, including packaged chips to be connected on printed-circuit-board (PCB), multiple-packaged chip, optical-electrical(O-E) conversion means, waveguide-board, and PCB. Single to multiple chips interconnects can be possible using this technique. The packaged-chip includes semiconductor-die and its package based on the ball-grid array or chip-scale-package. The O-E board includes the optoelectronics components and multiple electrical contacts. The waveguide board includes electrical conductors transferring signal from O-E board to PCB and the flex optical waveguide easily stackable onto the PCB, to guide optical signal from one chip-to-other chip. The chip-to-chip interconnects system is pin-free and compatible with the PCB. The main advantages are that standard packaged-chip and conventional PCB technology can be used for low speed electrical signal connection. Also, the part of the heat from the packaged chip can be transmitted to PCB through conductors, so that complex cooling system can be avoided.
Abstract:
High speed printed circuit boards (PCBs) are disclosed comprising a dielectrics systems with the back-side trenches, prepregs, signal lines and ground-plans, wherein the signal line and ground-plan are located on the dielectrics. Using of the open trenches in the substrate help to reduce the microwave loss and dielectric constant and thus increasing the signal carrying speed of the interconnects. Thus, according to the present invention, it is possible to provide a simple high speed PCB using the conventional material and conventional PCB manufacturing which facilitates the design of circuits with controlled bandwidth based on the trench opening in the dielectrics, and affords excellent reliability. According to this present invention, high speed PCB with the interconnect system contains whole portion or portion of interconnects for high speed chips interconnects and that have have the dielectric system with opened trench or slot to reduce the microwave loss.
Abstract:
High-speed interconnect systems for connecting two or more electrical elements are provided for on-chip interconnects. The manufacturing process to fabricate the interconnect structure using standard IC process is also provided. The interconnect systems consists of the electrical signal line, inhomogeneous dielectric systems, and with and without ground line, wherein inhomogeneous dielectric system consisting of the opened-trenches into the dielectric substrate or comb-shaped dielectrics to reduce the microwave loss. The signal lines located below and/or above the opened trenches. The opened trenches helps to reduce the microwave-loss induced due to the dielectric material and increases the on-chip interconnects bandwidth. Alternatively, dielectric system can have the structure based on fully electronic or electromagnetic crystal or quasi crystal with the line defect. The interconnect system, can be made in IC for on-chip interconnects using conventional IC manufacturing technology and yet to increase the interconnects-bandwidth.
Abstract:
An apparatus and method for producing a perpetual energy harvester which harvests ambient near ultraviolet to infrared radiation and provides continual power regardless of the environment. The device seeks to harvest the largely overlooked blackbody radiation through use of a semiconductor thermal harvester, providing a continuous source of power. Additionally, increased power output is provided through a solar harvester. The solar and thermal harvesters are physically connected but electrically isolated. “Perpetual energy harvester” as mentioned in this invention is interpreted to mean an energy harvester which is configured to harvest energy during day and/or night and/or light and/or dark.
Abstract:
Autonomous/self-powering image detecting systems and their manufacturing technologies are disclosed. An antenna is used to communicate signals. A first energy harvester is used to harvest energy from blackbody radiation, RF signals, movement/vibration, or combination thereof. A power management system is used which controls the energy flow to and from the energy-storage. An image sensor to take the image, a lens, and a transmitter to transmit the images to an outside device are also used in this invention. According to this preferred embodiment, an energy harvester harnessing energy from blackbody radiation from and within the body, is used to extract enough energy to increase the operation time and also to make precision of the image detecting system.
Abstract:
Fundamental interconnect systems for connecting high-speed electronics elements are provided. The interconnect systems consists of the signal line, dielectric system with opened trench or slot filled up with the air or lower dielectric loss material, and the ground plane. The signal line could be for example, microstripline, strip line, coplanar line, single ended or differential pairs. The interconnect system can be used for on-chip interconnects or can also be used for off-chip interconnects (chip-to-chip interconnects). The fundamental techniques provided in this invention can also be used for high-speed connectors and high-speed cables. More over, this fundamental technology is also used for the high sped die package, high speed connector, and high speed cables where conventional manufacturing technology can be used and yet to increase the bandwidth of the interconnects.
Abstract:
Fundamental interconnect systems for connecting high-speed electronics elements are provided. Interconnect system has the means, which could reduce the microwave loss by reducing the effective dielectric loss and dielectric constant of the interconnect system, and increase the bandwidth of the interconnects and also reduce the signal propagation delay, respectively. Ideally, the speed of the electrical signal on the signal line can be reached to speed of the light in the air, and the bandwidth can be reached to closer to the optical fiber. The interconnect systems consists of the signal line, dielectric system with opened trench or slot filled up with the air or lower dielectric loss material, and the ground plan. The signal line proposed in this invention could be made any type of signal line configuration for example, microstripline, strip line or coplanar line. The signal line can also be made as single ended or differential pairs of any configurations. The interconnect system based on the fundamental techniques provided in this invention, can be used for on-chip interconnects where the high speed electronics devices are connected by the signal line laid on the oxide or dielectric material. Again, the interconnect system based on the fundamental techniques provided in this invention, can also be used for off-chip interconnects (chip-to-chip interconnects), where the whole portion or portion of the PCB on which high speed chips are to be connected, are having the dielectric system with opened trench or slot to reduce the microwave loss. High scale chip-to-chip interconnection using of the multilayered PCB is possible. The fundamental techniques provided in this invention can also be used for high-speed connectors and high-speed cables. The main advantages of this invention are to make high speed interconnects systems for on-chip and off-chip interconnects. More over, this fundamental technology is also used for the high sped die package, high speed connector, and high speed cables where conventional manufacturing technology can be used and yet to increase the bandwidth of the interconnects.
Abstract:
Novel structures of photovoltaic cells (also treated as solar cells) are provided. The Cells are based on the nanometer-scaled wire, tubes, and/or rods, which are made of the electronics materials covering semiconductors, insulator or metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells can have also high radiation tolerant capability. These cells will have enormous applications such as in space, in commercial, residential and industrial applications.