Abstract:
This disclosure relates to supported multi-metallic catalysts for use in the hydrotreating of hydrocarbon feeds. The catalysts are prepared from a catalyst precursor comprised of at least one Group VIB metal, at least one Group VIII metal and an organic acid. The catalyst precursor is thermally treated to partially decompose the organic acid, then sulfided. The catalysts have a high carbon-as-carboxyl to total carbon ratio (Ccarboxy/Ctotal) as a result of a unique post-metal calcination method employed during the manufacture of the catalyst.
Abstract:
This disclosure relates to supported multi-metallic catalysts for use in the hydrotreating of hydrocarbon feeds, as well as a method for preparing such catalysts. The catalysts are prepared from a catalyst precursor comprised of at least one Group VIB metal, at least one Group VIII metal and an organic acid. The catalyst precursor is thermally treated to partially decompose the organic acid, then sulfided. The catalysts have a high carbon-as-carboxyl to total carbon ratio (Ccarboxy/Ctotal) as a result of a unique post-metal calcination method employed during the manufacture of the catalyst. As a result, the hydrotreating catalysts have lower percent weight loss-on-ignition, higher activity and longer catalyst life.
Abstract:
A supported catalyst for hydroprocessing, hydrotreating or hydrocracking hydrocarbon feedstocks, the supported catalyst comprising at least one metal from Group 6 and at least one metal from Groups 8, 9, or 10 of the Periodic Table of the Elements, and optionally comprising phosphorous. The Group 6 metal comprises about 30 to about 45 wt. % and the total of Group 6 and Group 8, 9, or 10 or mixtures thereof metal components comprise about 35 to about 55 wt. %, calculated as oxides and based on the total weight of the catalyst composition. The metals, and phosphorous when present, are carried on and/or within a porous inorganic oxide carrier or support, the support prior to incorporation of the metals and phosphorus, having a total pore volume (TPV) of about 0.8 cc/g to about 1.5 cc/g and comprising a defined pore size distribution and wherein the supported catalyst comprises a defined pore size distribution.
Abstract:
Alumina support compositions comprising at least 0.1 wt % of silica are disclosed. The alumina support are characterized by a pore volume of greater than 0.60 cc/g, a median pore size ranging from about 70 to about 120, a pore size distribution such that at least 90% of the total pore volume falls within the range of about 20 to about 250, and a pore size distribution width of no less than about 40. Alumina compositions of the present invention exhibit a primary peak mode at a pore diameter less than the median pore diameter. Also provided are catalysts made from the alumina supports, and processes of preparing and using the supports and catalysts.
Abstract:
Alumina support compositions comprising at least 0.1 wt % of silica are disclosed. The alumina support are characterized by a pore volume of greater than 0.60 cc/g, a median pore size ranging from about 70 to about 120, a pore size distribution such that at least 90% of the total pore volume falls within the range of about 20 to about 250, and a pore size distribution width of no less than about 40. Alumina compositions of the present invention exhibit a primary peak mode at a pore diameter less than the median pore diameter. Also provided are catalysts made from the alumina supports, and processes of preparing and using the supports and catalysts.
Abstract:
This disclosure relates to supported multi-metallic catalysts for use in the hydrotreating of hydrocarbon feeds, as well as a method for preparing such catalysts. The catalysts are prepared from a catalyst precursor comprised of at least one Group VIB metal, at least one Group VIII metal and an organic acid. The catalyst precursor is thermally treated to partially decompose the organic acid, then sulfided. The catalysts have a high carbon-as-carboxyl to total carbon ratio (Ccarboxy/Ctotal) as a result of a unique post-metal calcination method employed during the manufacture of the catalyst.
Abstract:
Alumina support compositions comprising at least 0.1 wt % of silica are disclosed. The alumina support are characterized by a pore volume of greater than 0.60 cc/g, a median pore size ranging from about 70 to about 120, a pore size distribution such that at least 90% of the total pore volume falls within the range of about 20 to about 250, and a pore size distribution width of no less than about 40. Alumina compositions of the present invention exhibit a primary peak mode at a pore diameter less than the median pore diameter. Also provided are catalysts made from the alumina supports, and processes of preparing and using the supports and catalysts.
Abstract:
Alumina support compositions comprising at least 0.1 wt % of silica are disclosed. The alumina support are characterized by a pore volume of greater than 0.60 cc/g, a median pore size ranging from about 70 to about 120, a pore size distribution such that at least 90% of the total pore volume falls within the range of about 20 to about 250, and a pore size distribution width of no less than about 40. Alumina compositions of the present invention exhibit a primary peak mode at a pore diameter less than the median pore diameter. Also provided are catalysts made from the alumina supports, and processes of preparing and using the supports and catalysts.