-
公开(公告)号:US12140478B2
公开(公告)日:2024-11-12
申请号:US17766184
申请日:2019-12-23
Applicant: Agilent Technologies, Inc.
Inventor: Daniel Finn McCarthy , Mark Andrew Woods
Abstract: The present invention is directed to a computer-implemented method of automatically identifying the presence of one or more elements in a sample via optical emission spectroscopy. The method includes the steps of obtaining sample spectrum data from the sample, obtaining a list of one or more predetermined emission wavelengths for each element in the periodic table quantifiable by optical emission spectroscopy, each predetermined emission wavelength being associated with a list of one or more potential interference emission wavelengths, determining a list of one or more analyte wavelengths corresponding to spectral peaks in the sample spectrum data based on the list of emission wavelengths, for each analyte wavelength, determining whether the corresponding spectral peak has a likelihood of being affected by an interference emission wavelength causing spectral interference based on the list of one or more potential interference emission wavelengths corresponding to the analyte wavelength, determining a revised list of one or more analyte wavelengths by removing from the list of analyte wavelengths, analyte wavelengths corresponding to spectral peaks having a likelihood of being affected by an interference emission wavelength, and determining a level of confidence that one or more elements are present in the sample based on a set of criteria applied to the revised list of analyte wavelengths.
-
公开(公告)号:US20240053201A1
公开(公告)日:2024-02-15
申请号:US17766184
申请日:2019-12-23
Applicant: Agilent Technologies, Inc.
Inventor: Daniel Finn McCarthy , Mark Andrew Woods
CPC classification number: G01J3/443 , G01N21/73 , G01J2003/2843
Abstract: The present invention is directed to a computer-implemented method of automatically identifying the presence of one or more elements in a sample via optical emission spectroscopy. The method includes the steps of obtaining sample spectrum data from the sample, obtaining a list of one or more predetermined emission wavelengths for each element in the periodic table quantifiable by optical emission spectroscopy, each predetermined emission wavelength being associated with a list of one or more potential interference emission wavelengths, determining a list of one or more analyte wavelengths corresponding to spectral peaks in the sample spectrum data based on the list of emission wavelengths, for each analyte wavelength, determining whether the corresponding spectral peak has a likelihood of being affected by an interference emission wavelength causing spectral interference based on the list of one or more potential interference emission wavelengths corresponding to the analyte wavelength, determining a revised list of one or more analyte wavelengths by removing from the list of analyte wavelengths, analyte wavelengths corresponding to spectral peaks having a likelihood of being affected by an interference emission wavelength, and determining a level of confidence that one or more elements are present in the sample based on a set of criteria applied to the revised list of analyte wavelengths.
-