Abstract:
Mutant polymerases are provided that have improved ability to incorporate modified nucleotides, including 3′-OH unblocked reversible terminators. The mutant polymerases may be used in a variety of applications, such as for polynucleotide sequencing, primer extension reactions, and template-independent enzymatic oligonucleotide synthesis.
Abstract:
Mutant polymerases are provided that have improved ability to incorporate modified nucleotides, including 3′—OH unblocked reversible terminators. The mutant polymerases may be used in a variety of applications, such as for polynucleotide sequencing, primer extension reactions, and template-independent enzymatic oligonucleotide synthesis.
Abstract:
Mutant polymerases are provided that have improved ability to incorporate modified nucleotides, including 3′-OH unblocked reversible terminators. The mutant polymerases may be used in a variety of applications, such as for polynucleotide sequencing, primer extension reactions, and template-independent enzymatic oligonucleotide synthesis.
Abstract:
The invention provides mutants of DNA polymerases having an enhanced resistance to inhibitors of DNA polymerase activity. The mutant polymerases are well suited for PCR amplification of targets in samples that contain inhibitors of wild-type polymerases.
Abstract:
The invention provides mutants of DNA polymerases having an enhanced resistance to inhibitors of DNA polymerase activity. The mutant polymerases are well suited for PCR amplification of targets in samples that contain inhibitors of wild-type polymerases.
Abstract:
Mutant polymerases are provided that have improved ability to incorporate modified nucleotides, including 3′-OH unblocked reversible terminators. The mutant polymerases may be used in a variety of applications, such as for polynucleotide sequencing, primer extension reactions, and template-independent enzymatic oligonucleotide synthesis.