Abstract:
A time-of-flight mass spectrometer (TOF-MS) utilizes a multi-channel ion detector to detect ions traveling in separate flight paths, spatially dispersed along a drift axis and/or a transverse axis, in a flight tube of a TOF analyzer. The ion beams may be dispersed by drift energy, deflection along the drift and/or transverse axis, ion mass, or a combination of two or more of the foregoing. The dispersion may be carried out before, at, or after an ion accelerator of the TOF analyzer. Ion packets may be accelerated into the flight tube at a multi-pulse firing rate. Tandem MS may be implemented on parallel ion beams simultaneously.
Abstract:
A time-of-flight mass spectrometer (TOF-MS) utilizes an ion dispersion device and a position-sensitive ion detector or an energy-sensitive ion detector to enable measurement of time of flight and kinetic energy of ions arriving at the detector. The measurements may be utilized to improve accuracy in calculating ion masses.
Abstract:
A time-of-flight mass spectrometer (TOF-MS) utilizes an ion dispersion device and a position-sensitive ion detector or an energy-sensitive ion detector to enable measurement of time of flight and kinetic energy of ions arriving at the detector. The measurements may be utilized to improve accuracy in calculating ion masses.
Abstract:
A time-of-flight mass spectrometer (TOF-MS) utilizes a multi-channel ion detector to detect ions traveling in separate flight paths, spatially dispersed along a drift axis and/or a transverse axis, in a flight tube of a TOF analyzer. The ion beams may be dispersed by drift energy, deflection along the drift and/or transverse axis, ion mass, or a combination of two or more of the foregoing. The dispersion may be carried out before, at, or after an ion accelerator of the TOF analyzer. Ion packets may be accelerated into the flight tube at a multi-pulse firing rate. Tandem MS may be implemented on parallel ion beams simultaneously.