Abstract:
A method of operating an integrated circuit may include receiving an update request via an input-output protocol, such as the Peripheral Interconnect Component Express (PCIe) protocol. The integrated circuit is placed in an update mode when the update request is received. State information is stored in predefined registers on the integrated circuit and configuration data on the integrated circuit may be subsequently updated. An asserted update mode signal is stored in a status register on the integrated circuit to indicate that the integrated circuit is in the update mode. The configuration data may include a core configuration portion and a peripheral configuration portion. When the integrated circuit is in the update mode, only the core configuration is updated while the peripheral configuration portion may be preserved.
Abstract:
A method of operating an integrated circuit may include receiving an update request via an input-Output protocol, such as the Peripheral Interconnect Component Express (PCIe) protocol. The integrated circuit is placed in an update mode when the update request is received. State information is stored in predefined registers on the integrated circuit and configuration data on the integrated circuit may be subsequently updated. An asserted update mode signal is stored in a status register on the integrated circuit to indicate that the integrated circuit is in the update mode. The configuration data may include a core configuration portion and a peripheral configuration portion. When the integrated circuit is in the update mode, only the core configuration is updated while the peripheral configuration portion may be preserved.
Abstract:
Systems and methods are provided for managing power of a device coupled with a transceiver module, in communication with a high-speed interface. In one aspect, a dynamic clock trunk tree associated with the transceiver module is controlled by a trunk driver having a first clock tree gate. A dynamic clock leaf tree associated with the device is controlled by a leaf driver having a second clock tree gate. Significant power savings may be achieved, for example, by triggering activation of clock gating mechanisms.
Abstract:
Systems and methods are provided for managing power of a device coupled with a transceiver module, in communication with a high-speed interface. In one aspect, a dynamic clock trunk tree associated with the transceiver module is controlled by a trunk driver having a first clock tree gate. A dynamic clock leaf tree associated with the device is controlled by a leaf driver having a second clock tree gate. Significant power savings may be achieved, for example, by triggering activation of clock gating mechanisms.
Abstract:
One embodiment relates to a method of calibrating duty cycle distortion. A data rate of a physical layer interface is changed from a lower rate to a higher rate, and a data rate of one or more transceivers associated with the physical layer interface is changed from the lower rate to the higher rate. An electrical idle state is maintained after changing the data rate of the transceiver. Duty cycle distortion calibration for one or more transceivers associated with the physical layer interface is then performed during the electrical idle state. Other embodiments and features are also disclosed.
Abstract:
Systems and methods are provided for managing power of a device coupled with a transceiver module, in communication with a high-speed interface. In one aspect, a dynamic clock trunk tree associated with the transceiver module is controlled by a trunk driver having a first clock tree gate. A dynamic clock leaf tree associated with the device is controlled by a leaf driver having a second clock tree gate. Significant power savings may be achieved, for example, by triggering activation of clock gating mechanisms.