Abstract:
A complexly shaped Si/SiC cermet part including a protective coating deposited on a surface of the cermet part facing the plasma of the reactor. The cermet part is formed by casting a SiC green form and machining the shape into the green form. The green form is incompletely sintered such that it is unconsolidated and shrinks by less than 1% during sintering. Molten silicon is flowed into the voids of the unconsolidated sintered body. Chemical vapor deposition or plasma spraying coats onto the cermet structure a protective film of silicon carbide, boron carbide, diamond, or related carbon-based materials. The part may be configured for use in a plasma reactor, such as a chamber body, showerhead, focus ring, or chamber liner.
Abstract:
The invention is embodied in a plasma reactor for processing a semiconductor wafer, the reactor having a gas distribution plate including a front plate in the chamber and a back plate on an external side of the front plate, the gas distribution plate comprising a gas manifold adjacent the back plate, the back and front plates bonded together and forming an assembly. The assembly includes an array of holes through the front plate and communicating with the chamber, at least one gas flow-controlling orifice through the back plate and communicating between the manifold and at least one of the holes, the orifice having a diameter that determines gas flow rate to the at least one hole. In addition, an array of pucks is at least generally congruent with the array of holes and disposed within respective ones of the holes to define annular gas passages for gas flow through the front plate into the chamber, each of the annular gas passages being non-aligned with the orifice.
Abstract:
Generally, an electrostatic chuck having a dielectric coating is provided. In one embodiment, an electrostatic chuck includes a support surface, a mounting surface disposed opposite the support surface and at least one side separating the support surface and the mounting surface which defines a support body. One or more conductive members are disposed within the support body to generate an electrostatic attraction between the body and a substrate disposed thereon. A dielectric coating is disposed on the mounting surface of the support body to minimize undesired current leakage therethrough. Optionally, the dielectric coating may be additionally disposed on one or more of the sides and/or the support surface.
Abstract:
An electrostatic chuck for holding a substrate has an electrostatic member having a dielectric covering an electrode that is chargeable to electrostatically hold the substrate. The bond layer has a metal layer that is infiltrated or brazed between the electrostatic member and the base. The base may be a composite of a ceramic and metal, the composite having a coefficient of thermal expansion within about null30% of a coefficient of thermal expansion of the electrostatic member. The base may also have a heater.
Abstract:
The invention is embodied in a plasma reactor for processing a semiconductor wafer, the reactor having a gas distribution plate including a front plate in the chamber and a back plate on an external side of the front plate, the gas distribution plate comprising a gas manifold adjacent the back plate, the back and front plates bonded together and forming an assembly. The assembly includes an array of holes through the front plate and communicating with the chamber, at least one gas flow-controlling orifice through the back plate and communicating between the manifold and at least one of the holes, the orifice having a diameter that determines gas flow rate to the at least one hole. In addition, an array of pucks is at least generally congruent with the array of holes and disposed within respective ones of the holes to define annular gas passages for gas flow through the front plate into the chamber, each of the annular gas passages being non-aligned with the orifice.
Abstract:
An electrostatic chuck has an electrode capable of being electrically charged to electrostatically hold a substrate. A composite layer covers the electrode. The composite layer comprises (1) a first dielectric material covering a central portion of the electrode, and (2) a second dielectric material covering a peripheral portion of the electrode, the second dielectric material having a different composition than the composition of the first dielectric material. The chuck is useful in a plasma process chamber to process substrates, such as semiconductor wafers.
Abstract:
An electrostatic chuck comprises a dielectric member comprising (i) a first layer comprising a semiconductive material, and (ii) a second layer over the first layer, the second layer comprising an insulative material. The insulative material has a higher electrical resistance than the semiconductive material. An electrode in the dielectric member is chargeable to generate an electrostatic force. The chuck is useful to hold substrates, such as semiconductor wafers, during their processing in plasma processes.
Abstract:
The present invention relates to novel heaters and methods of heating a vacuum chamber, such as a semiconductor wafer plasma processing chamber, using a ceramic igniter array consisting of a plurality of ceramic igniters positioned in a substrate.
Abstract:
A substrate processing chamber has a substrate support, a gas supply, a gas exhaust, a gas energizer, and a wall about the substrate support, the wall having a porous ceramic material at least partially infiltrated with a fluorinated polymer, whereby a substrate on the substrate support may be processed by gas introduced by the gas supply, energized by the gas energizer, and exhausted by the gas exhaust.
Abstract:
Apparatus for gas distribution in a semiconductor wafer processing chamber 200 having a roof 228. The roof 228 has a top surface 608 and a bottom surface 312. A recess 314 is disposed within the bottom surface 312 of the roof 228. A gas distribution plate 316 is disposed within the recess 314 and a material layer coating 320 is disposed upon the bottom surfaces 312/500 of the roof 228 and the gas distribution plate 316. The material layer coating 320 and the gas distribution plate 316 each have a plurality of apertures 322/404. The apertures 404 of the gas distribution plate 316 coincide with the apertures 322 in the material layer coating 320. The material layer coating 320 is formed from silicon carbide and most preferably is deposited by chemical vapor deposition (CVD). Both the roof 228 and gas distribution plate 316 are fabricated from silicon carbide.