Abstract:
A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
Abstract:
A method and apparatus for forming an optical stack having uniform and accurate layers is provided. A processing tool used to form the optical stack comprises, within an enclosed environment, a first transfer chamber, an on-board metrology unit, and a second transfer chamber. A first plurality of processing chambers is coupled to the first transfer chamber or the second transfer chamber. The on-board metrology unit is disposed between the first transfer chamber and the second transfer chamber. The on-board metrology unit is configured to measure one or more optical properties of the individual layers of the optical stack without exposing the layers to an ambient environment.
Abstract:
A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
Abstract:
Embodiments of the present invention provide an apparatus and methods for detecting an endpoint for a cleaning process. In one example, a method of determining a cleaning endpoint includes performing a cleaning process in a plasma processing chamber, directing an optical signal to a surface of a shadow frame during the cleaning process, collecting a return reflected optical signal reflected from the surface of the shadow frame, determining a change of reflectance intensity of the return reflected optical signal as collected, and determining an endpoint of the cleaning process based on the change of the reflected intensity. In another example, an apparatus for performing a plasma process and a cleaning process after the plasma process includes an optical monitoring system coupled to a processing chamber, the optical monitoring system configured to direct an optical beam light to a surface of a shadow frame disposed in the processing chamber.
Abstract:
Embodiments of the present disclosure relate to apparatus and methods for forming films having uniformity of thickness on substrates. Embodiments of the present disclosure may be used to measure thickness or other properties of films being deposited on a substrate without knowing beforehand the surface properties of the substrate. Embodiments of the present disclosure may be used to measure thickness or other properties of a plurality of layers being formed. For example, embodiments of the present disclosure may be used in measuring thickness of vertical memory stacks.
Abstract:
Embodiments of the present disclosure relate to apparatus and methods for forming films having uniformity of thickness on substrates. Embodiments of the present disclosure may be used to measure thickness or other properties of films being deposited on a substrate without knowing beforehand the surface properties of the substrate. Embodiments of the present disclosure may be used to measure thickness or other properties of a plurality of layers being formed. For example, embodiments of the present disclosure may be used in measuring thickness of vertical memory stacks.
Abstract:
Embodiments described herein generally relate to a DMD. The DMD includes a base and a plurality of mirrors disposed on the base. Each mirror of the plurality of mirrors has a surface facing away from the base, and a structure is disposed on the surface of each mirror. The structure enhances the reflectance of the surface of each mirror, which enhances the efficiency of light manipulation and delivery.
Abstract:
A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
Abstract:
A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
Abstract:
Embodiments of the present disclosure enable measurement of film properties, such as thickness, using reflectometry regardless of the underlying pattern on the substrate or base layer because the amount of phase shift resulting from the growing film at any wavelength is independent of the substrate or base layer. One embodiment of the method includes determining properties of the substrate from a time series data. Another embodiment of the method includes removing a plasma background for measuring data by making two consecutive measurement with a light source on and off respectively. Another embodiment includes determining a deposition start time by monitoring a plasma marker or a phase shift of optical properties.