Dose reduction of patterned metal oxide photoresists

    公开(公告)号:US11550222B2

    公开(公告)日:2023-01-10

    申请号:US16890867

    申请日:2020-06-02

    Abstract: Embodiments of the present disclosure generally relate to a multilayer stack used as a mask in extreme ultraviolet (EUV) lithography and methods for forming a multilayer stack. In one embodiment, the method includes forming a carbon layer over a film stack, forming a metal rich oxide layer on the carbon layer by a physical vapor deposition (PVD) process, forming a metal oxide photoresist layer on the metal rich oxide layer, and patterning the metal oxide photoresist layer. The metal oxide photoresist layer is different from the metal rich oxide layer and is formed by a process different from the PVD process. The metal rich oxide layer formed by the PVD process improves adhesion of the metal oxide photoresist layer and increases the secondary electrons during EUV lithography, which leads to decreased EUV dose energies.

    Tungsten silicide nitride films and methods of formation
    3.
    发明授权
    Tungsten silicide nitride films and methods of formation 有权
    钨硅化钨薄膜及其形成方法

    公开(公告)号:US09461137B1

    公开(公告)日:2016-10-04

    申请号:US14938559

    申请日:2015-11-11

    Abstract: Embodiments of the present disclosure include tungsten silicide nitride films and methods for depositing tungsten silicide nitride films. In some embodiments, a thin film microelectronic device includes a semiconductor substrate having a tungsten gate electrode stack comprising a tungsten silicide nitride film having a formula WxSiyNz, wherein x is about 19 to about 22 atomic percent, y is about 57 to about 61 atomic percent, and z is about 15 to about 20 atomic percent. In some embodiments, a method of processing a substrate disposed in physical vapor deposition (PVD) chamber, includes: exposing a substrate having a gate insulating layer to a plasma formed from a first process gas comprising nitrogen and argon; sputtering silicon and tungsten material from a target disposed within a processing volume of the PVD chamber; depositing atop the gate insulating layer a tungsten silicide nitride layer as described above; and depositing a bulk tungsten layer atop the tungsten silicide nitride layer.

    Abstract translation: 本公开的实施例包括硅化钨氮化物膜和用于沉积硅化钨氮化物膜的方法。 在一些实施例中,薄膜微电子器件包括具有钨栅极电极堆叠的半导体衬底,所述钨栅电极堆叠包括具有式W x Si y N z的硅化钨化硅膜,其中x为约19至约22原子%,y为约57至约61原子% ,z为约15〜约20原子%。 在一些实施例中,处理设置在物理气相沉积(PVD)室中的衬底的方法包括:将具有栅极绝缘层的衬底暴露于由包括氮和氩的第一工艺气体形成的等离子体; 从设置在PVD室的处理容积内的靶溅射硅和钨材料; 在栅极绝缘层的顶上沉积如上所述的硅化钨化硅层; 以及在硅化钨化硅层顶上沉积体钨层。

    Method and chamber for backside physical vapor deposition

    公开(公告)号:US12142478B2

    公开(公告)日:2024-11-12

    申请号:US17902357

    申请日:2022-09-02

    Abstract: Embodiments of the present disclosure generally relate to methods and apparatus for backside stress engineering of substrates to combat film stresses and bowing issues. In one embodiment, a method of depositing a film layer on a backside of a substrate is provided. The method includes flipping a substrate at a factory interface so that the backside of the substrate is facing up, and transferring the flipped substrate from the factory interface to a physical vapor deposition chamber to deposit a film layer on the backside of the substrate. In another embodiment, an apparatus for depositing a backside film layer on a backside of a substrate, which includes a substrate supporting surface configured to support the substrate at or near the periphery of the substrate supporting surface without contacting an active region on a front side of the substrate.

    Methods and apparatus for passivating a target

    公开(公告)号:US11512387B2

    公开(公告)日:2022-11-29

    申请号:US16846505

    申请日:2020-04-13

    Abstract: Methods and apparatus for passivating a target are provided herein. For example, a method includes a) supplying an oxidizing gas into an inner volume of the process chamber; b) igniting the oxidizing gas to form a plasma and oxidize at least one of a target or target material deposited on a process kit disposed in the inner volume of the process chamber; and c) performing a cycle purge comprising: c1) providing air into the process chamber to react with the at least one of the target or target material deposited on the process kit; c2) maintaining a predetermined pressure for a predetermined time within the process chamber to generate a toxic by-product caused by the air reacting with the at least one of the target or target material deposited on the process kit; and c3) exhausting the process chamber to remove the toxic by-product.

    Systems and methods for low resistivity physical vapor deposition of a tungsten film

    公开(公告)号:US10043670B2

    公开(公告)日:2018-08-07

    申请号:US14981190

    申请日:2015-12-28

    Abstract: Systems and methods for sputtering a layer of refractory metal layer onto a barrier layer disposed on a substrate are disclosed herein. In one or more embodiments, a method of sputter depositing a tungsten structure in an integrated circuit includes: moving a substrate into a plasma processing chamber and onto a substrate support in opposition to a sputter target assembly comprising a tungsten target having no more than ten parts per million of carbon and no more than ten parts per million of oxygen present as impurities; flowing krypton into the plasma processing chamber; and exciting the krypton into a plasma to deposit, by sputtering, a tungsten film layer on a material layer of a substrate supported by the substrate support. In some embodiments, the target assembly further includes a titanium backing plate and an aluminum bonding layer disposed between the titanium backing plate and the tungsten target.

Patent Agency Ranking