Abstract:
A method is described for decreasing the critical dimensions of integrated circuit features in which a first masking layer (101) is deposited, patterned and opened in the manner of typical feature etching, and a second masking layer (201) is deposited thereon prior to etching the underlying insulator. The second masking layer is advantageously coated in a substantially conformal manner. Opening the second masking layer while leaving material of the second layer on the sidewalls of the first masking layer as spacers leads to reduction of the feature critical dimension in the underlying insulator. Ashable masking materials, including amorphous carbon and organic materials are removable without CMP, thereby reducing costs. Favorable results are also obtained utilizing more than one masking layer (101, 301) underlying the topmost masking layer (302) from which the spacers are formed. Embodiments are also described in which slope etching replaces the addition of a separate spacer layer. Substructures formed in the fabrication process are also described. Spacers are also shown to be favorably employed in making feature-in-feature structures.
Abstract:
A plasma reactor is described that includes a vacuum chamber defined by an enclosure including a side wall and a workpiece support pedestal within the chamber defining a processing region overlying said pedestal. The chamber has at least a first pair of ports near opposing sides of said processing region and a first external reentrant tube is connected at respective ends thereof to the pair of ports. The reactor further includes a process gas injection apparatus (such as a gas distribution plate) and an RF power applicator coupled to the reentrant tube for applying plasma source power to process gases within the tube to produce a reentrant torroidal plasma current through the first tube and across said processing region. A magnet controls radial distribution of plasma ion density in the processing region, the magnet having an elongate pole piece defining a pole piece axis intersecting the processing region.
Abstract:
A substrate is placed in a process zone and an energized process gas is maintained in the process zone to process the substrate. A light beam is reflectively diffracted from a pattern of features of the substrate being processed, the reflected beam is monitored, and a signal is generated in relation to the monitored beam. During processing, a width of the features of the substrate can change. The generated signal is evaluated to detect the occurrence of a change in the width of the features.
Abstract:
A method and apparatus for processing wafers including a chamber defining a plurality of isolated processing regions. The isolated processing regions have an upper end and a lower end. The chamber further includes a plurality of plasma generation devices each disposed adjacent the upper end of each isolated processing region, and one of a plurality of power supplies connected to each plasma generation device. The output frequency of the plurality of power supplies are phase and/or frequency locked together. Additionally, the chamber includes a plurality of gas distribution assemblies. Each gas distribution assembly is disposed within each isolated processing region. A movable wafer support is disposed within each isolated processing region to support a wafer for plasma processing thereon. The movable wafer support includes a bias electrode coupled to a bias power supply configured to control the bombardment of plasma ions toward the movable wafer support.
Abstract:
Apparatus and method for processing a substrate are provided. The apparatus for processing a substrate comprises: a chamber having a first electrode; a substrate support disposed in the chamber and providing a second electrode; a high frequency power source electrically connected to either the first or the second electrode; a low frequency power source electrically connected to either the first or the second electrode; and a variable impedance element connected to one or more of the electrodes. The variable impedance element may be tuned to control a self bias voltage division between the first electrode and the second electrode. Embodiments of the invention substantially reduce erosion of the electrodes, maintain process uniformity, improve precision of the etch process for forming high aspect ratio sub-quarter-micron interconnect features, and provide an increased etch rate which reduces time and costs of production of integrated circuits.