Abstract:
A DC to AC power converter is disclosed. The power converter has four power-switching devices, two diodes, a step-up and isolation transformer, a capacitor-choke filter and a controller. Two power-switching devices located on the primary side of the transformer are switched to provide alternate cycles of an ac current to the primary side of the transformer, which magnetically couples the ac current to the secondary side of the transformer. Two power-switching devices on the secondary side of the transformer are switched to alternately allow the forward and return ac currents from the secondary side of the transformer in the output path to a load connected to the output of the DC to AC power converter.
Abstract:
We describe a semiconductor-on-insulator integrated circuit die comprising a substrate bearing a power conditioning circuit, the power conditioning circuit comprising at least two power devices, a lateral power device and a vertical power device. The power conditioning circuit comprises: a DC input to receive DC power, an AC output for connection to AC mains; a DC-to-DC converter having an input coupled to said DC input; a DC-to-AC converter having a DC input and an AC output to convert DC power to AC power for mains output; and a DC voltage regulator coupled between the output of said DC-to-DC converter and the input of said DC-to-AC converter to regulate said DC voltage input to said DC-to-AC converter. The regulator is configured to control an AC output current of said circuit by controlling said DC voltage input to the DC-to-AC converter.
Abstract:
We describe a photovoltaic power conditioning unit for delivering power from multiple photovoltaic panels to an ac mains power supply output, comprising: a dc input for receiving power from multiple photovoltaic panels; an ac output for delivering ac power to the ac supply; a bank of electrolytic energy storage capacitors for storing energy from the dc source for delivery to the ac supply; a dc-to-ac converter coupled to the ac output and having an input coupled to the bank for converting energy stored in the bank to ac power for the ac supply; and further comprising: a plurality of sense and control circuits, one for each capacitor in the bank, wherein each circuit is coupled in series with a capacitor, and is configured to disconnect the associated capacitor from the bank upon detection of a current flow thorough the associated capacitor of greater than a threshold current value.
Abstract:
We describe a photovoltaic (PV) panel system comprising a PV panel with multiple sub-strings of connected solar cells in combination with a power conditioning unit (microinverter). The power conditioning unit comprises a set of input power converters, one connected to each sub-string, and a common output power conversion stage, to provide power to an ac mains power supply output. Integration of the micro-inverter into the solar PV module in this way provides many advantages, including greater efficiency and reliability. Additionally, embodiments of the invention avoid the need for bypass diodes, a component with a high failure rate in PV panels, providing lower power loss and higher reliability.
Abstract:
This invention is generally concerned with power supply circuits, and more particularly, with circuits to supply power to a mains supply, such as domestic grid mains, from a photovoltaic device. A photovoltaic power conditioning circuit for providing power from a photovoltaic device to an alternating current mains power supply line, the circuit comprising: a DC input to receive DC power from said photovoltaic device; an AC output configured for direct connection to said AC mains power supply line; a DC-to-AC converter coupled to said DC input and to said AC output to convert DC power from said photovoltaic device to AC power for output onto said power supply line; and an electronic controller directly coupled to said power supply line to measure a voltage of said power supply line and a current in said supply line and to control said DC-to-AC converter responsive to said measuring.
Abstract:
This invention is generally concerned with power supply circuits, and more particularly, with circuits to supply power to a mains supply, such as domestic grid mains, from a photovoltaic device. A photovoltaic power conditioning circuit for providing power from a photovoltaic device to an alternating current mains power supply line, the circuit comprising: a DC input to receive DC power from said photovoltaic device; an AC output configured for direct connection to said AC mains power supply line; a DC-to-AC converter coupled to said DC input and to said AC output to convert DC power from said photovoltaic device to AC power for output onto said power supply line; and an electronic controller directly coupled to said power supply line to measure a voltage of said power supply line and a current in said supply line and to control said DC-to-AC converter responsive to said measuring.
Abstract:
For an array of installed energy harvesting devices, a method of gathering information about individual devices in the array and generating a layout or map of the installed devices based on the gathered information is provided. A communications gateway or a base station gathers the information and determines the positions of individual micro-inverters. The gathered information is used to generate a topological or geometrical map of the installed devices.
Abstract:
A solar photovoltaic monitoring system for monitoring and controlling a solar photovoltaic inverter is provided. The system includes a wireless transceiver coupled to a solar photovoltaic inverter that includes a device monitor for monitoring and controlling the inverter. The device monitor generates monitoring data defining a status of the system and transmits the data by using the transceiver coupled to the inverter. The system also includes a wireless repeater for receiving data from the inverter and retransmitting the data and a transceiver coupled to a gateway capable of communicating the received retransmitted data to a monitoring station. The gateway also transmits control data received from the monitoring station. The repeater receives control data from the gateway and retransmits data to the inverter. The inverter receives the retransmitted control data and controls its operation based on the received data.
Abstract:
For an array of installed energy harvesting devices, a method of gathering information about individual devices in the array and generating a layout or map of the installed devices based on the gathered information is provided. A communications gateway or a base station gathers the information and determines the positions of individual micro-inverters. The gathered information is used to generate a topological or geometrical map of the installed devices.
Abstract:
Improved techniques for photovoltaic power generation are described. Inverter failure is can be a significant problem in solar photovoltaic systems as it can lead to loss of opportunity to harvest energy. A solar photovoltaic (PV) power generation system is described comprising solar PV panels and power conditioning units. A dc power distribution bus is coupled to the solar PV panels and the power conditioning units to switchably share dc power from the solar PV panels between the power conditioning units. Power distribution controllers detect a faulty power conditioning unit and reroute power from a solar PV panel coupled to the faulty power conditioning unit to other power conditioning units via the dc distribution bus.