Abstract:
To provide a novel multilayer printed wiring board in which a conductor on the outermost resin layer is positioned properly. Furthermore, to provide a novel multilayer printed wiring board in which productivity is enhanced when forming solder bumps on the pads for mounting a semiconductor element. In multilayer printed wiring board, multiple pads for connection with a semiconductor chip are formed on one surface, and on its opposite surface, external connection terminals for connection with another substrate are formed. The pads for connection with a semiconductor chip are formed in the central region of one surface, stiffener is formed in the peripheral region surrounding the pads for connection with a semiconductor chip, pads for connection with a semiconductor chip and stiffener are formed with the same material and are set to be the same height, and the actual area of the stiffener is determined according to the total area of the multiple pads for connection with a semiconductor chip.
Abstract:
A printed wiring board includes multiple conductive layers having conductive circuits, multiple resin insulation layers having openings and including the uppermost resin insulation layer positioned as the outermost layer of the resin insulation layers, multiple via conductors formed in the openings, respectively, and connecting the conductive circuits in the conductive layers, and multiple component-loading pads formed of a copper foil and positioned to load an electronic component. The resin insulation layers and the conductive layers are alternately laminated, and the component-loading pads are formed on the uppermost resin insulation layer.
Abstract:
A printed wiring board includes multiple conductive layers having conductive circuits, multiple resin insulation layers having openings and including the uppermost resin insulation layer positioned as the outermost layer of the resin insulation layers, multiple via conductors formed in the openings, respectively, and connecting the conductive circuits in the conductive layers, and multiple component-loading pads formed of a copper foil and positioned to load an electronic component. The resin insulation layers and the conductive layers are alternately laminated, and the component-loading pads are formed on the uppermost resin insulation layer.
Abstract:
A solder resist composition comprises an acrylate of novolac type epoxy resin and an imidazole curing agent and has a viscosity of 0.5-10 Pa·s adjusted with glycol ether type solvent. A printed circuit board is formed by using such a solder resist composition.
Abstract:
A method for manufacturing a substrate with a metal film includes preparing a first insulation layer having first and second surfaces, forming a first conductive circuit on the first surface of the first insulation layer, forming on the first surface of the first insulation layer and on the first conductive circuit a second insulation layer having first and second surfaces, forming in the second insulation layer a penetrating hole tapering from the first surface toward the first conductive circuit, forming on the inner wall of the penetrating hole, a composition containing a polymerization initiator and a polymerizable compound, providing a polymer on the inner wall of the penetrating hole by irradiating the composition, applying a plating catalyst on the polymer, and forming a plated-metal film on the inner wall of the penetrating hole. The first surface of the first insulation layer faces the second surface of the second insulation layer.
Abstract:
A coreless multilayer printed wiring board including a coreless layer having an opening, a conductive film formed on an upper surface of the coreless layer and closing one end of the opening of the coreless layer, a via-hole formed in the opening of the coreless layer, a first resin layer formed on the coreless layer and the conductive film and having an opening reaching to the conductive film, a via-hole formed in the opening of the first resin layer, a second resin layer formed on the upper surface of the first resin layer and having an opening, a via-hole formed in the opening of the second resin layer. The via-holes formed in the first and second resin layers are open in the direction opposite to the direction in which the via-hole formed in the coreless layer is open.
Abstract:
A multilayer printed wiring board includes one or more resin layers having via-holes and a core layer having via-holes. The via-holes formed in the one or more resin layers are open in the direction opposite to the direction in which the via-holes formed in the core layer are open. A method for manufacturing a multilayer printed wiring board includes a step of preparing a single- or double-sided copper-clad laminate; a step of forming lands by processing the copper-clad laminate; a step of forming a resin layer on the upper surface of the copper-clad laminate, forming openings for via-holes in the resin layer, and then forming the via-holes; and a step of forming openings for via-holes in the lower surface of the copper-clad laminate and then forming the via-holes.
Abstract:
To provide a novel multilayer printed wiring board in which a conductor on the outermost resin layer is positioned properly. Furthermore, to provide a novel multilayer printed wiring board in which productivity is enhanced when forming solder bumps on the pads for mounting a semiconductor element. In multilayer printed wiring board, multiple pads for connection with a semiconductor chip are formed on one surface, and on its opposite surface, external connection terminals for connection with another substrate are formed. The pads for connection with a semiconductor chip are formed in the central region of one surface, stiffener is formed in the peripheral region surrounding the pads for connection with a semiconductor chip, pads for connection with a semiconductor chip and stiffener are formed with the same material and are set to be the same height, and the actual area of the stiffener is determined according to the total area of the multiple pads for connection with a semiconductor chip.
Abstract:
A printed wiring board includes multiple conductive layers having conductive circuits, multiple resin insulation layers having openings and including the uppermost resin insulation layer positioned as the outermost layer of the resin insulation layers, multiple via conductors formed in the openings, respectively, and connecting the conductive circuits in the conductive layers, and multiple component-loading pads formed of a copper foil and positioned to load an electronic component. The resin insulation layers and the conductive layers are alternately laminated, and the component-loading pads are formed on the uppermost resin insulation layer.
Abstract:
A method for manufacturing a printed wiring board, including providing a support board having a metal foil secured to the support board, forming a resin insulation layer on the metal foil, forming openings in the resin insulation layer, forming a conductive circuit on the resin insulation layer, forming in the openings via conductors to electrically connect the conductive circuit and the metal foil, separating the support board and the metal foil, and forming from the metal foil external terminals to electrically connect to another substrate or electronic component.