Abstract:
The present invention concerns a method and a device for feeding at least one chemical substance into a main process stream. The method of the invention comprises the steps of providing a concentrated stream of said chemical substance, mixing said concentrated stream with a diluent stream to provided a diluted stream of said chemical substance, injecting said diluted stream of said chemical substance into said main process stream, wherein said mixing of said concentrated stream with said diluent stream is effected by injecting a jet of either one of said concentrated stream or said diluent stream into the respective other stream. The device of the invention comprises a first pipe segment (21) having a first inlet (22) for a first fluid and a first outlet (23) for a mixed fluid, a second pipe segment (24) having a second inlet (25) for a second fluid and a second outlet (26) connected to and leading into said first pipe segment (21) between said first inlet (23) and said first outlet (24), and first connection means (27) for connecting said first outlet (23) of said first pipe section (21) to a main pipe (14) of said main process stream, wherein said second pipe segment (24) comprises at least one nozzle (28) for generating a jet (29) of said second fluid arranged upstream of said second outlet (26).
Abstract:
The present invention concerns a method and a device for feeding at least one chemical substance into a main process stream. The method of the invention comprises the steps of providing a concentrated stream of said chemical substance, mixing said concentrated stream with a diluent stream to provided a diluted stream of said chemical substance, injecting said diluted stream of said chemical substance into said main process stream, wherein said mixing of said concentrated stream with said diluent stream is effected by injecting a jet of either one of said concentrated stream or said diluent stream into the respective other stream. The device of the invention comprises a first pipe segment (21) having a first inlet (22) for a first fluid and a first outlet (23) for a mixed fluid, a second pipe segment (24) having a second inlet (25) for a second fluid and a second outlet (26) connected to and leading into said first pipe segment (21) between said first inlet (23) and said first outlet (24), and first connection means (27) for connecting said first outlet (23) of said first pipe section (21) to a main pipe (14) of said main process stream, wherein said second pipe segment (24) comprises at least one nozzle (28) for generating a jet (29) of said second fluid arranged upstream of said second outlet (26).
Abstract:
A three-dimensional porous catalyst, catalyst carrier or absorbent structure of stacked strands of catalyst, catalyst carrier or absorbent material, composed of layers of spaced-apart parallel strands, wherein parallel strands within a layer are arranged in groups of two or more closely spaced-apart, equidistant strands separated by a small distance, wherein the groups of equidistant strands are separated from adjacent strands or adjacent groups of strands by a larger distance.
Abstract:
A magnetocaloric cascade contains a sequence of magnetocaloric material layers having different Curie temperatures TC, wherein the magnetocaloric material layers include a cold-side outer layer, a hot-side outer layer and at least three inner layers between the cold-side outer layer and the hot-side outer layer, and each pair of next neighboring magnetocaloric layers of the magnetocaloric cascade has a respective Curie-temperature difference amount ΔTC between their respective Curie temperatures, wherein the hot-side outer layer or the cold-side outer layer or both the hot-side and cold-side outer layer exhibits a larger ratio mΔSmax/ΔTC in comparison with any of the inner layers, m denoting the mass of the respective magnetocaloric material layer and ΔSmax denoting a maximum amount of isothermal magnetic entropy change achievable in a magnetic phase transition of the respective magnetocaloric material layer.
Abstract:
A three-dimensional porous catalyst, catalyst carrier or absorbent monolith of stacked strands of catalyst, catalyst carrier or absorbent material, composed of alternating layers of linear spaced-apart parallel strands, wherein the strands in alternating layers are oriented at an angle to one another, wherein the distance between inner spaced-apart parallel strands is larger than the distance between outer spaced-apart parallel strands in at least a part of the layers of the monolith.
Abstract:
The invention relates to a method for carrying out a mass-transfer process in a column (1) comprising at least two separating trays (5), wherein each separating tray (5) comprises an upper tray (7) and a lower tray (9), and between the trays (7, 9) a lock (13) is formed, and valves (11) are provided which are designed in such a manner that a gas can flow through the separating tray (5), on interruption of the gas flow liquid flows from the upper tray (7) into the lock (13), and when gas supply is restarted, the liquid drains out of the lock (13), comprising the following steps: (a) flow of a gas exiting through valves (11) in the separating tray (5) through a liquid standing on the upper tray (7), wherein the amount of gas is high enough that no liquid flows back through the valve (11), (b) interruption of the gas supply in such a manner that the liquid runs through the valves (11) into the lock (13), (c) restart of the gas supply, wherein valves (11) in the lower tray (9) open, in such a manner that the liquid drains out of the lock (13), wherein the lock (13) is dimensioned in such a manner that the lock (13), after the liquid has drained from the upper tray (7) into the lock (13), is at most 70% filled with liquid. In addition, the invention relates to a valve for carrying out the method.
Abstract:
A valve for carrying out a mass-transfer process, in which a gas flows through liquid standing on a separating tray, when the gas supply is interrupted the liquid flows into a lock and, when the gas supply is restarted, the liquid flows out of the lock, wherein the valve contains a closing element which is designed in such a manner that, with the closing element in a first valve position, a first opening in a lower tray of the lock is closable, and the closing element is conducted in a first sleeve which is positioned between the upper tray bordering the lock and the lower tray in which sleeve, in the region of the lock, second openings are formed, and which projects over the upper tray and has a lift limiter for the closing element.