Abstract:
A method, apparatus and computer program product are provided to facilitate the establishment of device-to-device communications, such as non-cellular communications or cellular communications in a licensed exempt band. A method and apparatus receive cellular signals including one or more beacon transmission parameters, such as a beacon transmission interval and an identifier, and a beacon transmission status flag. The method and apparatus may also determine that the beacon transmission status flag is set to authorize beacon transmissions and then cause non-cellular beacon signals to be repeatedly transmitted in accordance with the one or more beacon transmission parameters. The method and apparatus may also cause a device-to-device connection to be established following transmission of the beacon signals. The device-to-device connection may be either a non-cellular device-to-device connection or a cellular device-to-device connection.
Abstract:
Methods, apparatus and computer program products are provided for rebalancing the sizes of downlink (DL) association sets for component carriers having different time division duplex subframe configurations. A method is provided that includes determining DL subframes that are included in a DL association set for each of a plurality of component carriers. In an instance in which the number of acknowledgement (ACK)/negative acknowledgement (NACK) bits corresponding to the DL subframes included in the DL association sets for respective component carriers differ by at least a predetermined amount, the method modifies the number of ACK/NACK bits corresponding to the DL subframes that are included in the DL association sets for each of the respective component carriers. The method may also cause transmission of the ACK/NACK bits in accordance with the DL association sets, as modified, via the respective component carriers. Corresponding apparatus and computer program products are also provided.
Abstract:
The invention allows coordinating transmissions and receptions for over-the-air communication between uncoordinated base stations of an OFDM based cellular radio network. A radio resource dedicated for OTAC between uncoordinated base stations of an OFDM based cellular radio network is divided into subchannels. Deployment information of the uncoordinated base stations is obtained at a mobility management unit. Transmission allocation information is determined at the mobility management unit based on the obtained deployment information, the transmission allocation information comprising for each of the uncoordinated base stations their respective at least one symbol in said subframe of said dedicated radio resource and their respective at least one subchannel for use in their respective over-the-air communication transmissions, such that simultaneous over-the-air communication transmissions between an uncoordinated base station and its target uncoordinated base station are prevented. To the uncoordinated base stations are transmitted their respective determined transmission allocation information.
Abstract:
The invention proposes a device, comprising a transceiver module, configured for communication on a first and at least one second band, the first band being reserved for communication using a specific communication standard, the second band being accessible for communication using different communication standards, and a control module, configured to control the transceiver module to receive and to transmit data, and to process received data. In one aspect, the control module is configured to request communication resources in the second band from another device using a first type of request, allocate said resources in the second band for communication upon receipt of a resource allocation confirmation from said another device, and to communicate using at least a part of the allocated resources in the second band A corresponding network device as well as related methods and computer program products are also disclosed.
Abstract:
The present invention discloses a signaling method, an apparatus and a computer program for controlled transmission signal deferring utilizing both licensed and unlicensed frequency bands for carrier aggregation. In the method, a connection is established between a User Equipment and a base station. For example, based on a sensed interference level, a transmission deferring indication is generated regarding a secondary component carrier locating on an unlicensed band, in case the secondary component carrier is occupied. This indication may be generated and sent either by the base station or by the User Equipment. Finally, the secondary component carrier is deactivated for data transmission, for deferring data transmission for a certain time period. After the deferring time has passed, the data transmission can be re-performed on the same secondary component carrier, or through switching to another secondary component carrier in unlicensed spectrum.
Abstract:
The present invention relates to methods, apparatuses and a computer program product for random access channel enhancement for carrier aggregation with different uplink/downlink configuration. The present invention includes detecting, at a user equipment, a downlink control channel in a specific downlink subframe on a first component carrier, receiving, at the user equipment, a downlink shared channel on the first component carrier, and transmitting, after a predetermined period, a random access channel in a specific uplink subframe on a second component carrier, the specific uplink subframe overlapping the specific downlink subframe on the first component carrier.
Abstract:
The specification and drawings present a new method, apparatus and software related product (e.g., a computer readable memory) for implementing a direct device-to-device communication of cellular devices, e.g., in LTE wireless systems, using discovery or discovery-like signaling To enable automatic discovery of other devices, a dedicated channel may be reserved for this purpose where devices may send a specific discovery signal with a predefined format, so that other devices listening in this channel can know the existence of the transmitters. For example, the discovery signal may be generated by one device for establishing a direct device-to-device communication, the discovery signal comprising a preamble part and a data part which comprises information for establishing the direct device-to-device communication, wherein a preamble resource for the preamble part is determined from a set of predefined resources and a data resource for the data part maps form the preamble resource.
Abstract:
A method, an apparatus for wireless communication and a network element for handling the retransmission of a failed packet during the TDD configuration change. The method comprises receiving at least one failed packet in a first TDD configuration; receiving information to change from the first TDD configuration to a second TDD configuration; sending a repeat request for said at least one failed packet; and receiving a retransmission of the failed packets of the first TDD configuration in the second TDD configuration.
Abstract:
A method and apparatus which allows dynamic TDD UL/DL configuration that is able to adapt to an instantaneous traffic situation. The values of at least one uplink/downlink configuration indication bit in a predetermined region in a received downlink time division duplex subframe of wireless data transmission are examined. A time division duplex uplink/downlink configuration for a predetermined configuration period is determined based on the examined values.
Abstract translation:允许能够适应瞬时交通状况的动态TDD UL / DL配置的方法和装置。 检查无线数据传输的接收的下行链路时分双工子帧中的预定区域中的至少一个上行链路/下行链路配置指示位的值。 基于所检查的值来确定用于预定配置周期的时分双工上行链路/下行链路配置。
Abstract:
A method, system, and computer program product that provides a two-index system for clusters of small cells in a wireless network. A first index is employed for access to and identification of a serving cell within a cluster of small cells. A second index indicates a group of small cells for determining mobility control. The first index may be derived from primary/secondary synchronization signals, or from frequency/time division multiplex signal position. The second index may be indicated in system/master information block signals or predefined as a plurality of small cells identified by the first index for each cell. Determination of physical cell identification is aided by providing a plurality of primary/secondary synchronization (PSS/SSS) signal alternating configurations with indicator, wherein a maximum number of configurations is predefined. Signaling the PSS/SSS configurations by one of broadcast or dedicated signaling, said signaling indicating whether each configuration is one of periodic or aperiodic alternation.