Abstract:
A photoconductor and method of forming a photoconductor for an electrophotographic device comprising forming a charge generation material comprising a plurality of quantum dots, and forming an active region comprising one or more photoconductor layers comprising the charge generation material including the surface modified quantum dots.
Abstract:
A photoconductor and method of forming a photoconductor for an electrophotographic device comprising forming a charge generation material comprising a plurality of quantum dots, and forming an active region comprising one or more photoconductor layers comprising the charge generation material including the surface modified quantum dots.
Abstract:
A photoconductor and method of forming a photoconductor comprising forming a charge generation material comprising a plurality of quantum dots, and forming an active region comprising one or more photoconductor layers comprising the charge generation material including the surface modified quantum dots is disclosed.
Abstract:
A photoconductor and method of forming a photoconductor for an electrophotographic device comprising forming a charge generation material comprising a plurality of quantum dots, and forming an active region comprising one or more photoconductor layers comprising the charge generation material including the surface modified quantum dots.
Abstract:
A photoconductor and method of forming a photoconductor comprising forming a charge generation material comprising a plurality of quantum dots, and forming an active region comprising one or more photoconductor layers comprising the charge generation material including the surface modified quantum dots is disclosed.