Abstract:
The present invention relates to the technical field of wireless communication, and discloses a method for frequency reuse based on cellular network. The method comprises the following steps: dividing the whole cellular network into a plurality of different cell clusters, wherein each cell cluster comprises three cells, every two of them being adjacent to each other; for each cell in a cell cluster, dividing the cell into a central area and an edge area according to the coverage of the cell; dividing the whole available frequency band of the network according to the user distribution and service distribution in the cell cluster; allocating divided frequency bands to the central area and the edge area in the cell cluster respectively according to preset rule; and applying the method for frequency reuse to other cell clusters, thus achieving the frequency reuse of the whole network. With the method, the average spectrum frequency efficiency of the cellular network can be improved, and interference among cells can be effectively suppressed.
Abstract:
A multiple access method includes: obtaining, by a user equipment (UE), first source information; extracting a semantic feature of the first source information to obtain a first semantic feature sequence; performing a joint source-channel coding on the first semantic feature sequence to obtain a first semantic information sequence; mapping the first semantic information sequence into preset time-frequency resources of an uplink multiple access channel; and transmitting the first semantic information sequence through the uplink multiple access channel.
Abstract:
The invention relates to the technical field of wireless communication, and provides a method for joint optimization of schedule and resource allocation based on a genetic algorithm, which is applied in a CoMP communication system. The method includes steps of: S1, encoding chromosome; S2, initializing setting; S3, computing fitness value; S4, determining whether the optimal solution is better than an elite: if yes, updating the elite and executing S5, and if no, turning to S5; S5, determining whether a predetermined generation of population has been generated or not, if no, executing S6, otherwise, turning to S8; S6, participating reproduction process to generate two offspring chromosome individuals; S7, determining whether a predetermined number of offspring chromosome individuals have been generated, if yes, turning to S3 to compute again; otherwise keeping on reproduction; S8, performing schedule and resource allocation according to a solution corresponding to the elite. Under the condition of satisfying schedule limitation and power limitation, the method can, by uniting schedule and resource allocation, efficiently optimize system performance with less computing complexity.